نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران. رایانامه: fpimard@yahoo.com

2 نویسنده مسئول، گروه باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران. رایانامه: mohammadkhani@sku.ac.ir

3 پژوهشکده بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران. رایانامه: niazi@shirazu.ac.ir

4 گروه باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران. رایانامه: shahsavar@shirazu.ac.ir

5 گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران. رایانامه: nouri1351@sku.ac.ir

چکیده

تنش خشکی یکی از عوامل محدودکننده کشاورزی در بسیاری از مناطق دنیا به‌ویژه ایران است. درک مکانیسم اثر تنش خشکی بر واکنش­های فیزیولوژیکی و بیوشیمیایی ژنوتیپ­ها، برای انتخاب و اصلاح ژنوتیپ­های سازگار با شرایط ایران بسیار مفید می­باشد. بدین منظور، پژوهش حاضر در سال­های 98-1397 در پژوهشکده بیوتکنولوژی دانشگاه شیراز با هدف بررسی تأثیر تنش خشکی بر ویژگی‌های فیزیولوژیکی و بیوشیمیایی نهال‌های دوساله انار رقم واندرفول در شرایط گلخانه انجام شد. آبیاری در چهار سطح  100 درصد (شاهد)، 75 درصد، 55 درصد و 35 درصد ظرفیت زراعی به‌مدت 50 روز انجام شد. آزمایش بر پایه طرح کاملاً تصادفی با سه تکرار انجام شد. نتایج نشان داد که تنش کم‌آبی باعث افزایش میزان کاروتنویید، فلاونویید، مالون‌دی‌آلدهید‏ و پرولین شد. محتوای نسبی آب برگ، ثبات غشای سلول و میزان آنتوسیانین تحت تنش کم‌آبی کاهش یافت، اما در میزان کلروفیل کل و گلیسین بتائین بین سطوح مختلف آبیاری تفاوت معنی‌دار ایجاد نشد. میزان پراکسید هیدروژن (81 درصد) و هم‌چنین فعالیت آنزیم­های آنتی‌اکسیدانی سوپراکسیداز دیسموتاز (480 درصد)، کاتالاز (96 درصد) و آسکوربات پراکسیداز (153 درصد) در تیمار 35 درصد در مقایسه با شاهد افزایش معنی­داری نشان دادند. با توجه به نتایج این پژوهش به‌ویژه افزایش میزان پرولین و آنزیم­های آنتی­اکسیدانی در اثر تیمارهای کم­آبی، مکانیسم­های تحمل به خشکی در انار رقم واندرفول می­تواند در ارتباط با تنظیم اسمزی فعال و هم‌چنین سیستم فعال آنتی­اکسیدانی آنزیمی و غیرآنزیمی در این رقم باشد.  

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Water Stress on Some Physiological and Biochemical Indices of Pomegranate cv. ‘Wonderful’

نویسندگان [English]

  • farzaneh Pimard 1
  • Abdolrahman Mohammadkhani 2
  • Ali Niazi 3
  • Alireza Shahsavar 4
  • Mohammad-Reza Nouri-Emamzadei 5

1 Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: fpimard@yahoo.com

2 Corresponding Author, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: mohammadkhani@sku.ac.ir

3 Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran. E-mail: niazi@shirazu.ac.ir

4 Department of Horticulture, Faculty of Agriculture, Shiraz University, Shiraz, Iran. E-mail: shahsavar@shirazu.ac.ir

5 Department of Soil Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: nouri1351@sku.ac.ir

چکیده [English]

Drought stress is one of the limiting factors of agriculture in many parts of the world, especially Iran. Understanding the mechanism behind drought stress’ effect on physiological and biochemical processes of genotypes is very useful for selecting and breeding genotypes compatible with Iranian conditions. For this purpose, the present study has been conducted in 2018-2019 in the Biotechnology Research Institute of Shiraz University to investigate the effect of drought stress on physiological and biochemical characteristics of both years’ old pomegranate seedlings of Wonderful cultivar in greenhouse conditions. Irrigation has been carried out at four levels of 100% (control), 75%, 55%, and 35% of field capacity for 50 days. The experiment is based on a completely randomized design with three replications. The results show that drought stress has significantly increased carotenoids, flavonoids, malondialdehyde, and proline. The relative leaf water content, cell membrane stability and anthocyanins has decreased, though there has been no significant difference in chlorophyll and glycine betaine levels between drought treatments. Also, the hydrogen peroxide (81%) and activity of superoxide dismutase (480%), catalase (96%), and ascorbate peroxidase (96%) in 35% of field capacity significantly has increased. According to the results of this study, especially the increase in proline and antioxidant enzymes under drought stress, tolerance mechanisms in pomegranate cultivar Wonderful can be associated with active osmotic regulation and active enzymatic antioxidant system.

کلیدواژه‌ها [English]

  • Antioxidant
  • Drought stress
  • Membrane stability
  • Photosynthesis
  • Proline
Alexieva, V., Sergiev, I., Mapelli, S., & Karanova, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24(12), 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
Anjum, N. A., Sharma, P., Gill, S. S., Hasanuzzaman, M., khan, E. A., Kachhap, K., Mohamed, A. A., Thangave P Devi, G. D., Vasudhevan, P., Sofo, A., Khan, N. A., Misra, A. N., Lukatkin, A. S., Singh, H. P., Pereira, E., & Tuteja, N. (2016). Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 23, 19002–19029. https://doi.org/10.1007/s11356-016-7309-6
Bahantana, P., & Lazarovitch, N. (2010). Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agriculture Water Management. 97, 715-722. https://doi.org/10.1016/j.agwat.2009.12.016
Bastam, N., Baninasab, B., & Ghobadi, C. (2012). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Journal of Plant Growth Regulation, 69, 275-284. https://doi.org/10.1007/s10725-012-9770-7
Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. http://dx.doi.org/10.1007/BF00018060
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Analytical Biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Bompadre,  M. J., Silvani, V. A., Bidondo, L. F., Rios de Molina, M. D. C., Colombo, R. P., Pardo, A. G., & Godeas, A. M. (2014). Arbscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growning under different irrigation conditions. Botany, 92(3), 187-193. https://doi.org/10.1139/cjb-2013-0169
Catola, S., Marino, G., Emiliani, G., Huseynova, T., Musayev, M., Akparov, Z., & Maserti, B. E. (2016). Physiological and metabolomic analysis of Punica granatum L. under drought. Planta, 243(2), 441-9. https://doi.org/ 10.1007/s00425-015-2414-1
Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1-9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
Chin, L. (2007). Investigations into lead (Pb) accumulation in Symphytum officinale L.: A Phytoremediation Study. Ph.D Thesis, University of Canterbury, New Zealand.
Conceicao dos Santos, I.,  Furtado de Almeida, A. A., Priminho Pirovani, C., Gilberto, M., Costa, C., Santos da Conceicao, A., Soares, Filho, W. S.,  Coelho Filho, M. A., & Silva Gesteira, A. (2019). Physiological, biochemical and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environmental and Experimental Botany, 37, 33-42. https://doi.org/10.1016/j.envexpbot.2019.03.018
Da-Li, G., li-yuan, L., Ming-jia, Y.,  Xiao-xia, SH., Li-juan, J., Hai-yan, L., Li-ping, W., Yan, Y., Ji-di, X., Cui-ying, L., Jian-tao, Y., Feng-wang, M., & Qing-mei, G. (2019). Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. Journal of Integrative Agriculture, 18(6), 1280-1294. https://doi.org/10.1016/s2095-3119(19)62571-2
Dhindsa, R. S., Dhindsa, P. P., &  Thorpe, T. A. (1981). Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93-101. https://doi-org.eres.qnl.qa/10.1093/jxb/32.1.93
 Doulati Baneh, H., Ahmadaali, J.,  & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some iranian and foreign commercial grape varieties. Pomology research, 4(2), 127-142.
Ebtedaie, M., & Shekafandeh, A. (2017). Antioxidant and carbohydrate changes of two pomegranate cultivars under deficit irrigation stress. Spanish Journal of Agricultural Research, 14(4), 8-9. https://doi.org/10.5424/sjar/2016144-9317
Eftekhari Shahabadi, A. (2017). Interaction of drought stress and foliar application of salicylic acid and kaolin on morphophysiological and biochemical responses of two pomegranate cultivars. Master Thesis, Shiraz University. (In Persian)
Esna-Ashari, M., & Hassani Moghadam, E. (2021). Selection of six commercial iranian pomegranates (Punica granatum L.) cultivars for drought stress tolerance based on some leaf nutrient elements. Horticultural Science, 35(3), 355-365. (In Persian) https://doi.org/10.22067/jhs.2021.60222.0
Gao, T.,  Zhang. Z., Liu, X., Wu. Q., Chen, Q., Liu, Q., Nocker, S.V.,  Ma, F., & li, C. (2020). Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 148, 260-272. https://doi.org/10.1016/j.plaphy.2020.01.022
Gholami, M., Rahemi, M., Kholdebarin, B., & Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148, 109-117. https://dx.doi.org/10.1016/j.scienta.2012.09.005
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinert in abiotic stress in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium  compounds. Plant  and Soil, 70, 303-307.
Haddad, R., & Mokhlesian, S. (2015). Effect of silicon on the peroxidase gene expression and morphological traits of barley under drought stress. Journal of Cell and Tissue, 6(4), 451-460. (In Persian) https://doi.org/10.52547/jct.6.4.451
Hanci, F., & Cebeci, E. (2014). Investigation of proline, chlorophyll and carotenoids changes under drought stress in some onion (Allium Cepa L.) cultivars. Turkish  Journal Of Agricultural And Natural Sciences, 2, 1499-1504.
Hassani Moghadam, E., Esna-Ashari, M., & Rezaeinejad, A. (2015). Effect of drought stress on some physiological characteristics in six commercial iranian pomegranate (Punica granatum L.) Cultivars. Plant Products Thechnology, 15(1), 1-11. (In Persian).
He, J. D,. Zou, Y. N., Wu, Q. S., & Kca, K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 256, 108745. https://doi.org/10.1016/j.scienta.2019.108745
Health, R. I., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
Jain, S. M., Al-Khayri, J. M., & Johnson, D. V. (2011). Date Palm Biotechnology. Springer Science and Business Media, Heidelberg, London, New York, 743 p.
Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2010). Physiology of Environmental Stresses in Plant. Mashhad university Jahad. (In Persian)
Karimi, S., Karami, H., Vahdati, K., & Mokhtassi-Bidgoli, A. (2020). Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 267, 1-10. https://doi.org/10.1016/j.scienta.2020.109322
Karimi, S., Yadollahi, A., & Arzani, K. (2013). Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4), 1-7. (In Persian)
Khan, M. A., Gul, B., & Weber, D.J. (2004). Action of plant growth regulators and salinity on seed germination of ceratoides lanata. Canadian Journal of Botany, 82, 37-42. https://doi.org/10.1139/B03-140
Liu, J., lin Deng, J., & Tian, Y. (2020). Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Phytochemistry, 171(6), 112226. https://doi.org/10.1016/j.phytochem.2019.112226.
Lu, S., Wang, Z., Niu, Y., Guo, Z., & Huang, B. (2008). Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress. Journal of the American Society for Horticultural Science, 133(3), 360-366. https://doi.org/10.21273/JASHS.133.3.360
Lutts, S., Kinet, J., & Bouharmont, J. (1996). Nacl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
Marraccini, P., Vinecky, F., Alves, G. S. C., Ramos, H. J. O., Elbelt, S., & Vieira, N. G. (2012). Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. Journal of Experimental Botany, 63(11), 4191-4212. https://doi.org/10.1093/jxb/ers103
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880. https://doi.org/10.4236/ajac.2014.511081
Nishida, Y., Yamashita, E., & Wataru, M. (2007). Quenching activities of common hydrophilic and lipophilic antioxidants against Singlet Oxygen Using Chemiluminescence Detection System. Carotenoid Science (An Interdisciplinary Journal of Research on Carotenoids), 11, 16-20.
Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163-168. https://doi.org/10.1016/j.scienta.2008.07.031
Pakzad, R., Fatehi, F., Kalantar, M., & Maleki, M. (2019). Evaluating the antioxidant enzymes activities, lipid peroxidation and proteomic profile changing in UCB-1 pistachio rootstock leaf under drought stress. Scientia Horticulturae, 256 (108617), 1-12. https://doi.org/10.1016/j.scienta.2019.108617
Parvin, P.,  Khezri, M.,  & Tavasoliyan, I. (2014). Effects of drought stress on some morphological, physiological and biochemical parameters of persian walnut seedling (Juglans regia L.). Journal of Plant Production Research, 21(3), 1-25. (In Persian)
Pena, M. E., Artés-Hernández, F., Aguayo, E., Martínez-Hernández, G. B., Galindo, A., Artes, F., & Gomez, P. A. (2013). Effect of sustained deficit irrigation on physicochemical properties, bioactive compounds and postharvest life of pomegranate fruit (cv. ‘Mollar de Elche’). Postharvest Biology and Technology, 86, 171-180. https://doi.org/10.1016/j.postharvbio.2013.06.034
Rad, M. H.,  Asghari, M. R., & Asareh, M. H. (2015). The Effects of Drought Stress on Growth, Yield and Fruit Quality of  Pomegranate (Punica granatum L.) cv. Rababe Niriz Under Dry Climate Condition. Seed and Plant Production Journal, 35(1), 75-90. (In Persian) https://doi.org/10.22092/sppj.2017.110567
Sharma, A., Wang, J., Xu, D., Tao, S., Chang, S., Yan, D., Li, Z., Yuan, H,., & Zheng, B. (2020). Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of the Total Environment, 713(136675), 44 p. https://doi.org/10.1016/j.scitotenv.2020.136675.
Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. https://doi.org/10.1093/jxb/erl164
Taiz., L., & Zeiger, E. (2006). Plant physiology. Fourth Edition. Sinauer Associates. Inc: Publishers Sunderland Massachusetts, 738 p.
Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., & Tehranifar, A. (2014). Integrated Impact of salinity and drought stress on quantity and quality of pomegranate (Punica granatum L.). Bulletin of Environment, Pharmacology and Life Sciences, 4(1), 146-151.
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidatative stress and some antioxidative systems in acid raine treated bean plants. Plant Science, 51, 59-99. https://doi.org/10.1016/S0168-9452(99)00197-1
Wang, Z., Li, G., Sun, H., Li. M., Guo, Y., Zhao, Y., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), https://doi.org/10.1242/bio.035279
Xiaoyue, c., Jianan, X., Bo, Zh., Chengcheng, Ch., Yunyun, T., Pingying, Zh., &  Jianxia, Zh. (2020). Physiological change and screening of differentially expressed genes of wild Chinese Vitis yeshanensis and American Vitis riparia in response to drought stress. Scientia Horticulturae, 266, 109140. https://doi.org/10.1016/j.scienta.2019.109140
Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S. M., Rahaie, M., Struve, D., & Striker, G. G. (2014). Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana). Biotechnology Agronomy Society and Environment, 18(3), 353-366.