نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم خاک، دانشکده مهندسی کشاورزی، دانشگاه بوعلی سینا همدان، همدان، ایران.

2 استاد، گروه علوم خاک، دانشکده مهندسی کشاورزی، دانشگاه بوعلی سینا همدان، همدان، ایران.

چکیده

برای بررسی پیامد کاربرد زغال گرمایی و زغال گرمابی فرآوری‌شده از مانده­های گیاه سیب­زمینی بر شناسه­های رشد گیاه لوبیا، اندازه کلروفیل و میکوریزایی‌شدن ریشه در تنش خشکی، پژوهشی با طرح اسپلیت‌پلات با سه تکرار در گلخانه دانشکده کشاورزی دانشگاه بوعلی سینا در سال 1396 انجام شد. کرت اصلی تنش خشکی با دو تیمار و کرت فرعی چهار تیمار بهساز از مانده­های گیاه سیب‌زمینی بود. کاربرد تنش خشکی و بهساز­های گوناگون بر شناسه­های رشدی گیاه، اندازه کلروفیل و میکوریزایی‌شدن ریشه پیامد چشم­گیر داشت. تنش خشکی مایه کاهش وزن خشک اندام هوایی و ریشه به‌ترتیب به اندازه 8/39 و 1/46 درصدشد، هم‌چنین اندازه کلروفیل a (6/52 درصد)، کلروفیل b (58 درصد)، کلروفیل کل (52/54 درصد) کاهش پیدا کرد. اگرچه گره­زایی ریزوبیوم­ها در تنش خشکی کاهش یافت، اما درصد میکوریزایی‌شدن ریشه­ها 2/19 درصد افزایش یافت. کاربرد بیوچار مایه افزایش همزیستی گیاه لوبیا با قارچ­های میکوریزی شد که در آن میکوریزایی‌شدن ریشه 34/11 درصد و فراوانی اسپورهای آن‌ها در خاک 5/50 درصد افزایش یافت.  رشد گیاه و سبزینه آن در خاک تیمارشده با مانده­های خام بیش‌ترین بود و مایه افزایش وزن خشک اندام هوایی (8/49 درصد) و اندازه کلروفیل a و b (54/3 و 8/36 درصد) شد. یافته­های این پژوهش نشان داد که از میان تیمار­های تهیه‌شده از اندام هوایی سیب­زمینی بهترین عملکرد مربوط به کاربرد بیوچار آن بود که این تیمار توانست اثرات منفی تنش خشکی بر گیاه لوبیا را کاهش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Biochar And Hydrochar Produced from Potato Plant Residue on Bean Growth Indices and Mycorrhizal Symbiosis in Drought Stress

نویسندگان [English]

  • mehran beygi kharvani 1
  • Ali Akbar Safari Sinegani 2

1 Former M.Sc. Student, Department Soil Sciences, Agriculture Faculty, Hamedan Bu Ali Sina University, Hamedan, Iran

2 Professor, Department Soil Sciences, Agriculture Faculty, Hamedan Bu Ali Sina University, Hamedan, Iran

چکیده [English]

A study was conducted as split plot layout with three replications at the research greenhouse of Bu-Ali Sina University, Hamedan in 2017 in order to investigate the consequences of using biochar and hydrochar, produced from potato plant residue on bean plant growth indices, chlorophyll content, and root mycorrhizal symbiosis in drought stress. The main plot and subplots in this study have been two drought levels and four amendment treatments, respectively. The study shows that the drought stress and the application amendments in various forms have had significant effects on plant growth indices, chlorophyll content, and root mycorrhizal colonization. Drought stress reduces root and shoot dry weights up to 39.8, 46.1%, leaf chlorophyll a (Chl a) content up to 52.6%, chlorophyll b (Chl b) content up to 58%, and total chlorophyll up to 54.52%. Although the number of rhizobium nodule on the root of plant decreases in drought stress, the rate of root mycorrhiza rises by 19.2% in drought stress. The use of biochar increased the mycorrhizal symbiotic indices significantly. It increases root colonization 11.34% and Glomeromycota spore number 50.5% in soil. The application of raw residue in soil has had the most positive effects on the plant growth indices and the leaf chlorophyll contents, leading to increased shoot dry weights (49.8%) and chlorophyll a, b and total contents (3.54%, 36.8%, and 14.5% respectively). The findings of this study show that among the treatments, the best plant growth index has been obtained in the use of potato biochar, which reduces the harmful effects of drought stress on the bean plant.

کلیدواژه‌ها [English]

  • biochar
  • chlorophyll
  • hydrochar
  • mycorrhizal symbiosis
  • nodulation
Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, M., & Qayyum, M. F. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and environmental safety, 148, 825-833.‏
Abbas, T., Rizwan, M., Ali, S., Rehman, M.Z., Qayyum, M.F., Abbas, F., Hannan, F., Rinklebe, J., Ok, Y.S., 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf. 140, 37-47.
Aggangan, N. S., Cortes, A. D., & Reaño, C. E. (2019). Growth response of cacao (Theobroma cacao L.) plant as affected by bamboo biochar and arbuscular mycorrhizal fungi in sterilized and unsterilized soil. Biocatalysis and Agricultural Biotechnology, 22, 101347.‏
Akdeniz, N. 2019. A systematic review of biochar use in animal waste composting. Waste Management 88, 291-300.
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68.‏
Amalfitano, C., Agrelli, D., Borrelli, C., Cuciniello, A., Morano, G., & Caruso, G. (2018). Production system effects on growth, pod yield and seed quality of organic faba bean in southern Italy. Folia Horticulturae, 30(2), 375-385.‏
Amalfitano, C., Gomez, L. D., Frendo, P., De Pascale, S., Pepe, O., Simister, R., & Caruso, G. (2018). Plant–Rhizobium symbiosis, seed nutraceuticals, and waste quality for energy production of Vicia faba L. as affected by crop management. Chemical and Biological Technologies in Agriculture, 5(1), 1-13.‏
Arpanahi, A. A., Feizian, M., Mehdipourian, G., & Khojasteh, D.N. (2020). Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology, 100, 103217.‏
Bashir, A., Rizwan, M., ur Rehman, M. Z., Zubair, M., Riaz, M., Qayyum, M. F., & Ali, S. (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere, 246, 125809.‏
Bedini, S., Turrini, A., Rigo, C., Argese, E., & Giovannetti, M. (2010). Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biology and Biochemistry, 42(5), 758-765.‏
Boyer, L. R., Brain, P., Xu, X. M., & Jeffries, P. (2015). Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza, 25(3), 215-227.‏
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Cao, J., Xie, L., Zheng, Y., & Yang, Y. (2020). Drought intensifies the effects of warming on root-colonizing arbuscular mycorrhizal fungal community in subtropical Chinese fir plantation. Forest Ecology and Management, 464, 118078.‏
Dalpé, Y. (1993). Vesicular-arbuscular mycorrhiza. Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, 287-301.
Davari, S.A., Gokhale, N.B., Palsande, V.N., Kasture, M.C., 2018. Wal (Lablab purpureus L.): an unexploited potential food legumes. Int. J. Chem Stud. 6, 946–949.
De Figueiredo, C. C., Farias, W. M., Coser, T. R., de Paula, A. M., da Silva, M. R. S., & Paz-Ferreiro, J. (2019). Sewage sludge biochar alters root colonization of mycorrhizal fungi in a soil cultivated with corn. European Journal of Soil Biology, 93, 103092.‏‏
De Silva, N.D.G., Cholewa, E., Ryser, P., 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubru  L.). J. Exp. Bot. 63(16), 5957-5966.
Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., Zhou, L., 2017. Potential benefits of biochar in agricultural soils: a eeview. Pedosphere. 27(4), 645-661.
El-Naggar, A., Soo, S., Rinklebe, J., Farooq, M., & Song, H. (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337, 536-554.
Gavili, E., Moosavi, A. A., & Haghighi, A. A. K. (2019). Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean?. Industrial Crops and Products, 128, 445-454.‏
Ghobadi, M., Taherabadi, S., Ghobadi, M. E., Mohammadi, G. R., & Jalali-Honarmand, S. (2013). Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products, 50, 29-38.‏
Godlewska, P., Schmidt, H.P., Ok, Y.S., Oleszczuk, P. (2017). Biochar for composting improvement and contaminants reduction: A review. Bioresource Technology, 246, 193-202.
Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., & Atakol, A. R. D. A. (2014). Effect of phosphorus‐enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil use and management, 30(2), 182-188.‏
Hashem, A., Kumar, A., Al-Dbass, A. M., Alqarawi, A. A., Al-Arjani, A. B. F., Singh, G., ... & Abd_Allah, E. F. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi journal of biological sciences, 26(3), 614-624.‏
Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., van Groenigen, J.W., Hungate, B.A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett., 12(5), 053001.
Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2020). The role of biochars in sustainable crop production and soil resiliency. Journal of experimental botany, 71(2), 520-542.‏
Karasu, A., & Oz, M. (2010). A study on coefficient analysis and association between agronomical characters in dry bean (Phaseolus vulgaris L.). Bulgarian Journal of Agricultural Science, 16(2), 203-211.‏
Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current opinion in chemical biology, 17 (3), 515-521.
Li, Q., Wang, M., Fu, Q., Li, T., Liu, D., Hou, R., & Ji, Y. (2020). Short-term influence of biochar on soil temperature, liquid moisture content and soybean growth in a seasonal frozen soil area. Journal of Environmental Management, 266, 110609.‏
Luna, L., Miralles, I., Andrenelli, M. C., Gispert, M., Pellegrini, S., Vignozzi, N., & Solé-Benet, A. (2016). Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 143, 256-264.‏
Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of hazardous materials, 320, 36-44.‏
Moosavi, A. A., Mansouri, S., & Zahedifar, M. (2015). Effect of soil water stress and nickel application on micronutrient status of canola grown on two calcareous soils. Plant Production Science, 18(3), 377-387.‏
Moosavi, A. A., Mansouri, S., Zahedifar, M., & Sadikhani, M. R. (2014). Effect of water stress and nickel application on yield components and agronomic characteristics of canola grown on two calcareous soils. Archives of Agronomy and Soil Science, 60(12), 1747-1764.‏
Nielsen, S., Joseph, S., Ye, J., Chia, C., Munroe, P., van Zwieten, L., & Thomas, T. (2018). Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertiliser on crop yield, soil chemistry and microbial communities. Agriculture, ecosystems & environment, 255, 52-61.‏
Novak, J. M., Spokas, K. A., Cantrell, K. B., Ro, K. S., Watts, D. W., Glaz, B., & Hunt, P. G. (2014). Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil use and management, 30(2), 175-181.
Ortas, I. (2016). Role of mycorrhizae and biochar on plant growth and soil quality. Biochar, a regional supply chain approach in view of climate change mitigation. Cambridge Universitey Press, Cambridge. UK, 398, 424.‏
Paetsch, L., Mueller, C.W., Kögel-Knabner, I., von Lützow, M., Girardin, C., & Rumpel, C. (2018). Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Sci. Rep., 8(1), 1- 11. https://doi.org/ 10.1038/s41598-018-25039-x.
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1), 158-161.
Purakayastha, T.J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D.C.W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere, 227, 345-365.
Rady, M. M., El-Azeem, M. M. A., El-Mageed, T. A. A., & Abdelhamid, M. T. (2018). Integrative potassium humate and biochar application reduces salinity effects and contaminants, and ımproves growth and yield of eggplant grown under saline conditions. International Journal for Empirical Education and Research, 1(2), 37-36.
Razaq, M., Salahuddin, Shen, H.L., Sher, H., & Zhang, P. (2017). Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep., 7(1), 1-11.
Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S.A., Rehman, M.Z., Qayyum, M.F., & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ. Sci. Pollut. Res., 22(20), 15416-15431.
Salam, A., Bashir, S., Khan, I., & Hu, H. (2019). Two years impacts of rapeseed residue and rice straw biochar on Pb and Cu immobilization and revegetation of naturally co. contaminated soil. Appl. Geochem, 105, 97-104.
Schmidt, H.P., Kammann, C., Niggli, C., Evangelou, M.W.H., Mackie, K.A., & Abiven, S. (2014). Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ., 191, 117-123.
Shamim, M.I. A., Dijkstra, F.A., Abuyusof, M., & Hossin, A.I. (2015). Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere, 25(5), 713-719.
Strain, H. H., & Svec, W. A. (1966). Extraction, separation, estimation, and isolation of the chlorophylls. In The chlorophylls (pp. 21-66). Academic Press.‏
Sylvia, D. M. (1994). Vesicular-arbuscular mycorrhizal fungi. Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, (methodsofsoilan2), 351-378.
Tan, Z., Lin, C.S.K., Ji, X., & Rainey, T.J. (2017). Returning biochar to fields: a review. Appl. Soil Ecol. 116, 1-11.
Vico, A., Pérez-Murcia, M. D., Bustamante, M. A., Agulló, E., Marhuenda-Egea, F. C., Sáez, J. A., & Moral, R. (2018). Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. Journal of environmental management, 226, 408-415.
Wathira, N. L., Wachira, P., & Okoth, S. (2016). Enhancement of colonisation of soybean roots by arbuscular mycorrhizal fungi using vermicompost and biochar. Agriculture, Forestry and Fisheries, 5 (3), 71-78.‏
Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261.‏
Wright, S. F., & Upadhyaya, A. (1996). Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil science, 161(9), 575-586.‏
Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil science and plant nutrition, 52(4), 489-495.‏
Zeeshan, M., Ahmad, W., Hussain, F., Ahamd, W., Numan, M., Shah, M., & Ahmad, I. (2020). Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. Journal of Cleaner Production, 255, 120318.‏
Zhang, J., Tang, X., Zhong, S., Yin, G., Gao, Y., & He, X. (2017). Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Scientific reports, 7(1), 1-9.