نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران.

2 استادیار، گروه باغبانی، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران

چکیده

هدف: مطالعه حاضر به‌منظور بررسی اثر نوع محیط­های کشت مختلف شامل MS، WPM و B5 و هورمون بنزیل آمینوپورین بر خصوصیات پرآوری و هم‌چنین اثر غلظت‌های مختلف هورمون‌های ایندول‌بوتیریک‌اسید و ایندول‌استیک‌اسید بر ریشه‌زایی گیاه زوفا انجام شد.
روش پژوهش: آزمایش‌ها به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در آزمایشگاه کشت بافت دانشکده کشاورزی دانشگاه جیرفت انجام شد. به‌منظور تولید گیاهچه‌های استریل بذرهای جمع‌آوری‌شده از مناطق کوهستانی استان کرمان بر روی محیط کشت MS کاشته شد. ریزنمونه‌های تک‌گره بر روی محیط‌های کشت MS، WPM و B5 با ترکیب هورمونی بنزیل آمینوپورین با غلظت‌های صفر، 1 و 2 میلی­گرم بر لیتر قرار گرفتند. برای تولید ریشه شاخساره­های تولیدشده بر روی محیط کشت MS با ترکیب هورمونی ایندول‌بوتیریک‌اسید و ایندول‌استیک‌اسید با غلظت­های 5/0 و 1 میلی­گرم در لیتر قرار گرفتند. در نهایت معماری ریشه­های تولیدشده با استفاده از نرم‌افزار GiaRoots مورد تجزیه و تحلیل قرار گرفت.
یافته‌ها: طبق نتایج پژوهش بهترین ضریب پرآوری در محیط کشت MS به‌همراه غلظت 2 میلی‌گرم بر لیتر از هورمون بنزیل آمینوپورین به‌دست آمد. هم‌چنین نتایج مربوط به آنالیز معماری ریشه نیز نشان داد بهترین تیمار ریشه­زایی استفاده از هورمون ایندول‌بوتیریک‌اسید با غلظت 1 میلی­گرم بر لیتر بود.
نتیجه‌گیری: نتایج مربوط به سازگاری نشان داد که 85 درصد از گیاهان منتقل‌شده به گلخانه زنده ماندند.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of Culture Media and Plant Growth Regulators on Micropropagation and Root Architecture of the Hyssop medicinal plant (Hyssopus officinalis L.) under in vitro Conditions

نویسندگان [English]

  • Mohammad Sadat-Hosseini 1
  • Naser Askari 2

1 Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.

2 Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.

چکیده [English]

Objective: The present study was performed to study the effects of MS, WPM, B5 culture media and benzylaminopurine (BAP) hormone on hyssop proliferation, and to assess the effects of different concentrations of IBA and IAA hormones on rooting characteristics of hyssop.
Methods: The experiments were conducted as a factorial with a completely randomized design with three replications at the laboratory of tissue culture of the Faculty of Agriculture, University of Jiroft. To produce sterile seedlings, seeds were collected from mountainous regions of Kerman province and planted on the MS medium. The single-node explants were cultivated on MS, WPM, and B5 culture media containing the benzylaminopurine hormone with concentrations of 0, 1, and 2 mg/L. To induce rooting, the shoots were placed on the MS culture medium containing 0.5 and 1 mg/L of indole butyric acid and indole acetic acid. GiaRoots software was employed to analyze the architecture of the roots obtained.
Results: Based on the research results, the highest proliferation coefficient was obtained in the MS culture medium with a concentration of 2 mg/L of benzylaminopurine hormone. In addition, the results of root architecture analysis showed that IBA hormone with a concentration of 1 mg/L demonstrated the most effective treatment for rooting induction.
Conclusion: The adaptation test results demonstrated that 85% of the plants transferred to the greenhouse survived.

کلیدواژه‌ها [English]

  • Medicinal plant
  • Micropropagation
  • Plant growth regulator
  • Tissue culture

منابع

علیزاده، مرتضی و حسینی، بهمن (1392). بررسی اثر نوع توده و تیمار هورمونی BAP بر باززایی درون‌شیشه ای گیاه دارویی زوفا (Hyssopus officinalis L.). نشریه علوم باغبانی. 27 (2)، 207-201.
 

References

Alizadeh, M., & Hosseini, B. (2013). Effect of population type and BAP treatments on In vitro regeneration of Hyssop (Hyssopus officinalis L.). Journal of Horticultural Science, 27(2), 201-207. (In Persian).
Babich, O., Sukhikh, S., Pungin, A., Ivanova, S., Asyakina, L., & Prosekov, A. (2020). Modern trends in the in vitro production and use of callus, suspension cells and root cultures of medicinal plants. Molecules, 25(24), 5805.
Borrelli, F., Pagano, E., Formisano, C., Piccolella, S., Fiorentino, A., Tenore, G. C., & Pacifico, S. (2019). Hyssopus officinalis subsp. aristatus: An unexploited wild-growing crop for new disclosed bioactives. Industrial Crops and Products, 140, 111594.
Cardoso, J. C., Oliveira, M. E., & Cardoso, F. D. C. (2019). Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37, 124-132.
Džamić, A. M., Soković, M. D., Novaković, M., Jadranin, M., Ristić, M. S., Tešević, V., & Marin, P. D. (2013). Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Industrial Crops and Products, 51, 401-407.
Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A., & Weitz, J. S. (2012). GiA Roots: software for the high throughput analysis of plant root system architecture. BMC plant biology, 12(1), 1-12.
Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental cell research, 50(1), 151-158.
Hosseini, B., Alizadeh, M., Hassani, A., Jafari, M., & Rahimi, A. (2016). High-frequency in vitro direct shoot regeneration from nodal explants of hyssop plant (Hyssopus officinalis L.). Journal of Medicinal plants and By-product, 5(2), 187-193.
Hristova, Y., Wanner, J., Jirovetz, L., Stappen, I., Iliev, I., & Gochev, V. (2015). Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnology & Biotechnological Equipment, 29(3), 592-601.
Judžentien ̇e, A. (2016). Hyssop (Hyssopus officinalis L.) Oil. In Essential Oils in Food Preservation, Flavor and Safety. Edited by Preedy, V. London: Academic Press, Elsevier.
Kulpa, D., Wesołowska, A., & Jadczak, P. (2018). Micropropagation and composition of essentials oils in garden thyme (Thymus vulgaris L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 525-532.
Lloyd, G., & McCown, B. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagators' Society, 30, 421-427.
Ma, X., Ma, X., Ma, Z., Sun, Z., Yu, W., Wang, J., & Ding, J. (2014). The effects of uygur herb Hyssopus officinalis L. on the process of airway remodeling in asthmatic mice. Evidence-Based Complementary and Alternative Medicine, 2014, 710870.
Mićović, T., Topalović, D., Živković, L., Spremo-Potparević, B., Jakovljević, V., Matić, S., & Maksimović, Z. (2021). Antioxidant, antigenotoxic and cytotoxic activity of essential oils and methanol extracts of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants, 10(4), 711.
Monfort, L. E. F., Bertolucci, S. K. V., Lima, A. F., de Carvalho, A. A., Mohammed, A., Blank, A. F., & Pinto, J. E. B. P. (2018). Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Industrial Crops and Products, 116, 231-239.
Monfort, L. E. F., Bertolucci, S. K. V., Lima, A. F., de Carvalho, A. A., Mohammed, A., Blank, A. F., & Pinto, J. E. B. P. (2018). Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Industrial Crops and Products, 116, 231-239.
Morinaka, H., Coleman, D., Sugimoto, K., & Iwase, A. (2023). Molecular mechanisms of plant regeneration from differentiated cells: approaches from historical tissue culture systems. Plant and Cell Physiology, 64(3), 297-304.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
Nagella, P., & Murthy, H. N. (2010). Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource Technology, 101(17), 6735-6739.
Nanova, Z., Slavova, Y., Nenkova, D., & Ivanova, I. (2007). Microclonal Propagation propagation of Hyssop (Hyssopus officinalis L.). Bulgarian journal of agricultural science, 13(2), 213.
Nanova, Z., Slavova, Y., Nenkova, D., & Ivanova, I. (2007). Microclonal Propagation of Hyssop (Hyssopus officinalis L.) Bulgarian journal of agricultural science, 13(2), 213-219.
Nathiya, S., Pradeepa, D., Devasena, T., & Senthil, K. (2013). Studies on the effect of sucrose, light and hormones on micropropagation and in vitro flowering of Withania somnifera Var. JAWAHAR-20. The Journal of Animal and Plant Sciences, 23(5), 1391-1397.
Nazir, U., Gul, Z., Shah, G. M., & Khan, N. I. (2022). Interaction effect of auxin and cytokinin on in vitro shoot regeneration and rooting of endangered medicinal plant Valeriana jatamansi jones through tissue culture. American Journal of Plant Sciences, 13(2), 223-240.
Otroshy, M., & Moradi, K. (2011). Micropropagation of medicinal plant Dracocephalum kotschyi Boiss. via nodal cutting technique. Journal of Medicinal Plants Research, 5(25), 5967-5972.
Salehi, A., & Setorki, M. (2017). Effect of Hyssopus officinalis essential oil on chronic stress-induced memory and learning impairment in male mice. Bangladesh Journal of Pharmacology, 12(4), 448-454.
Schuchovski, C.S., & Biasi, L.A. (2019). In vitro establishment of ‘Delite’rabbiteye blueberry microshoots. Horticulturae, 5(1), 24.
Shoja, H., & Shishavani, H. (2021). Effects of different hormonal treatments on growth parameters and secondary metabolite production in organ culture of Hyssopus officinalis L. BioTechnologia, 102(1), 33-41.
Slimani, C., Sqalli, H., Rais, C., Wafae, S., Lazraq, A., El Ghadraoui, L., & Echchgadda, G. (2020). Improvement of germination rate and in vitro multiplication of Lavandula angustifolia. Journal of Applied Biology and Biotechnology, 8(2), 52-57.
Venditti, A., Bianco, A., Frezza, C., Conti, F., Bini, L. M., Giuliani, C., & Maggi, F. (2015). Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Industrial crops and products, 77, 353-363.
Vlase, L., Benedec, D., Hanganu, D., Damian, G., Csillag, I., Sevastre, B., & Tilea, I. (2014). Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules, 19(5), 5490-5507.
Xiao, Y., Niu, G., & Kozai, T. (2011). Development and application of photoautotrophic micropropagation plant system. Plant Cell, Tissue and Organ Culture (PCTOC), 105, 149-158.
Zayova, E., Geneva, M., Stancheva, I., Dimitrova, L., Petrova, M., Hristozkova, M., & Salamon, I. (2018). Evaluation of the antioxidant potential of in vitro propagated hyssop (Hyssopus officinalis L.) with different plant growth regulators. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 10(4), 295-304.