نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری اکولوژی گیاه زراعی، گروه زراعت و اصلاح نباتات، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانش‌آموخته دکتری فیزیولوژی گیاهان زراعی، گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

3 دانش آموخته دکتری فیزیولوژی گیاهان زراعی، دانشگاه صنعتی شاهرود، ایران.

4 دانشیار مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

5 دانشجوی دکتری زراعت، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد شهر قدس

6 دانشجوی دکتری اکولوژی گیاه زراعی، گروه زراعت و اصلاح نباتات، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی

7 دانشجوی دکتری اکولوژی گیاه زراعی، گروه زراعت و اصلاح نباتات، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

کاربرد مهارکننده نیتریفیکاسیون نیتراپایرین به جهت حفظ و نگهداری طولانی‌مدت کود اوره در خاک و جلوگیری از آبشویی آن حیاتی است. از این رو این مطالعه باهدف بررسی عملکرد و خصوصیات فیزیولوژیک ارقام گندم در شرایط کاربرد سطوح مختلف کودی و خاک‌ورزی اجرا شد. این پژوهش به‌صورت کرت خردشده فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در منطقه کرج طی دو سال زراعی (از 1398 تا 1400) اجرا شد. تیمارهای آزمایش شامل دو سطح خاک‌ورزی (بی‌خاکورزی و خاک‌ورزی مرسوم) در کرت اصلی و سه سطح کودی (اوره، ترکیب نیتراپایرین + اوره و شاهد (کرت اصلی) و دو رقم (رخشان و پیشگام) در کرت فرعی بود. نتایج تجزیه مرکب نشان داد بالاترین عملکرد دانه گندم در رقم رخشان با 8331 کیلوگرم در هکتار و سطح کودی اوره+نیتراپایرین در بی خاک‌ورزی به دست آمد که نسبت به کاربرد اوره 15/6 درصد برتری داشت. همچنین در هر دو سیستم خاک‌ورزی بیش‌ترین میزان شاخص سطح برگ و شاخص بهره‌وری نیتروژن نیز در همین تیمار به دست آمد به‌طوری‌که در مقایسه با تیمار کاربرد اوره به‌ترتیب 1/6، 7/2 درصد در بی‌خاک‌ورزی و 8/0 و 3/1 درصد در خاک‌ورزی مرسوم بیش‌تر بود. به‌طورکلی می‌توان گفت کاربرد نیتراپایرین باعث بهبود عملکرد گندم در هر دو سطح خاک‌ورزی شد. کاربرد نیتراپایرین علاوه بر بهبود عملکرد گیاه می‌تواند در کاهش مخاطرات زیست‌محیطی ناشی از مصرف کودهای شیمیایی همچون اوره نیز مؤثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the performance and physiological characteristics of wheat cultivars under the influence of nitrapyrin application in different tillage conditions

نویسندگان [English]

  • Ashkan Jalilian 1
  • Ghorban Khodabin 2
  • MOJDEH SADAT Khayat Moghadam 3
  • Ehsan Zandi Esfahan 4
  • Fatemeh Amini 5
  • Nima Shahbazi 6
  • Mohammad Zargaran 7

1 Ph.D. of crop ecology, Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran

2 Ph.D. of crop physiology, Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Former Ph.D. Student, Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Iran.

4 Associate Professor, Research Institute of Forests and Rangelands, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, Iran.

5 . Ph.D. candidate of agronomy, Department of Agronomy and Plant Breeding, Faculty of Agricultural Science, Islamic Azad University, Shahr-e-Qods Branch, Iran

6 Ph.D. candidate of crop ecology, Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran

7 Ph.D. candidate of crop ecology, Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran

چکیده [English]

The use of nitrification inhibitor nitrapyrin is vital for the long-term maintenance of urea fertilizer in the soil and preventing its leaching. Therefore, this study was carried out to investigate the yield and physiological characteristics of different wheat cultivars under different levels of fertilization and tillage systems. This study was performed as a split-split plot based on a randomized complete block design with three replicates in Karaj during two cropping seasons (2019-21). The experimental treatments included two tillage levels (no-tillage and conventional tillage) in the main plot and three fertilizer levels (urea, nitrapyrin + urea combination and control (main plot), and two cultivars (Rokshan and Pishgam) in the secondary plot. The results of the composite analysis showed that the highest yield of wheat grain was obtained in Rakhshan cultivar with 8331 kg/ha and the level of urea + nitrapyrin fertilizer was obtained in no-tillage, which was 6.15% superior to the level of urea. Also, in both tillage systems, the highest amount of leaf area index and nitrogen productivity index was obtained in the same treatment, so compared to the treatment of urea application, 6.1%, 2.7% in no-tillage and 0.8% and 1.3% in Cultivation was more common. In general, nitrapyrin improved wheat yield in both tillage levels. In addition to improving plant performance, the use of nitrapyrin can also be effective in reducing environmental hazards caused by the use of chemical fertilizers such as urea.

کلیدواژه‌ها [English]

  • Nitrate
  • Nitrification
  • Photosynthesis
  • Tillage
  • Wheat
جلیلیان، اشکان؛ مندنی، فرزاد؛ خرمی وفا، محمود و باقری، علیرضا (1397). ارزیابی مدل CliPest در شبیه‌سازی رقابت گندم (Aestivum triticum L.) و یولاف وحشی (Avena ludoviciana L.) در کرمانشاه. بوم شناسی کشاورزی. 10 (1)، 248-266.
 
Agbede, T. M. (2010). Tillage and fertilizer effects on some soilproperties, leaf nutrient concentrations, growth and sweet potatoyield on an Alfisol in southwestern Nigeria. Soil and Tillage Research, 110, 25-32.
Álvaro-Fuentes, J., Plaza-Bonilla, D., Arrúe, J. L., Lampurlanés, J., & Cantero-Martínez, C. (2012). Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil, 376(1), 31-41.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1-15.
Bhandari, M., Ma, Y., Men, M., Wu, M., Xue, C., Wang, Y., Li, Y., & Peng, Z. (2020). Response of winter wheat yield and soil N 2 O emission to nitrogen fertilizer reduction and nitrapyrin application in North China Plain. Communications in Soil Science and Plant Analysis, 51(4), 554-565.
Cai, W. W., Ai, T. C., Li, R., Jin, Z. Y., Xu, J. G., & Cao, K. K. (2018). Effects of controlled release fertilizer and urea additive on photosynthetic characteristics and yield of double cropping rice. Soil and Fertilizer Sciences in China, 3, 54-60.
Carbonetto, B., Rascovan, N., Álvarez, R., Mentaberry, A., & Vázquez, M. P. (2014). Structure, Composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas. PLOS ONE, 9(6), e99949.
Carson, J. K., Gonzalez-Quiñones, V., Murphy, D. V., Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology, 76(12), 3936-3942.
Chen, D. L., Freney, J. R., Mosier, A. R., & Chalk, P. M. (1994). Reducing denitrification loss with nitrification inhibitors following presowing applications of urea to a cottonfield. Australian Journal of Experimental Agriculture, 34(1), 75-83.
Cheng, Y., Elrys, A. S., Wang, J., Xu, C., Ni, K., Zhang, J., Wang, S., Cai, Z., & Pacholski, A. (2022). Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat-rice rotation system. Agriculture, Ecosystems & Environment, 324, 107720.
Corrochano-Monsalve, M., González-Murua, C., Estavillo, J. M., Estonba, A., & Zarraonaindia, I. (2020a). Unraveling DMPSA nitrification inhibitor impact on soil bacterial consortia under different tillage systems. Agriculture, Ecosystems & Environment, 301, 107029.
Corrochano-Monsalve, M., Huérfano, X., Menéndez, S., Torralbo, F., Fuertes-Mendizábal, T., Estavillo, J. M., & González-Murua, C. (2020b). Relationship between tillage management and DMPSA nitrification inhibitor efficiency. Science of The Total Environment, 718, 134748.
Dawar, K., Khan, A., Sardar, K., Fahad, S., Saud, S., Datta, R., & Danish, S. (2021a). Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Science of The Total Environment, 757, 143739.
Dawar, K., Sardar, K., Zaman, M., Müller, C., Sanz-Cobena, A., Khan, A., Borzouei, A., & Pérez-Castillo, A. G. (2021b). Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere, 31(2), 323-331.
Dawar, K., Zaman, M., Rowarth, J. S., Blennerhassett, J., & Turnbull, M. H. (2011). Urea hydrolysis and lateral and vertical movement in the soil: effects of urease inhibitor and irrigation. Biology and Fertility of Soils, 47(2), 139-146.
Ezeagu, I. E., Petzke, J. K., Metges, C. C., Akinsoyinu, A. O., & Ologhobo, A. D. (2002). Seed protein contents and nitrogen-to-protein conversion factors for some uncultivated tropical plant seeds. Food Chemistry, 78(1), 105-109.
FAO. (2021). Food and Agriculture Organization of the United Nations. FAOSTAT Data.
www.faostat.fao.org
Guardia, G., Tellez-Rio, A., García-Marco, S., Martin-Lammerding, D., Tenorio, J. L., Ibáñez, M. Á., & Vallejo, A. (2016). Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agriculture, Ecosystems & Environment, 221, 187-197.
Hofmeijer, M., Krauss, M., Berner, A., Peigné, J., Mäder, P., & Armengot, L. (2019). Effects of Reduced Tillage on Weed Pressure, Nitrogen Availability and Winter Wheat Yields under Organic Management. Agronomy, 9(4), 180.
Khodabin, G., Lightburn, K., Hashemi, S. M., Moghadam, M. S. K., & Jalilian, A. (2022). Evaluation of nitrate leaching, fatty acids, physiological traits and yield of rapeseed (Brassica napus) in response to tillage, irrigation and fertilizer management. Plant and Soil, 473,423-440.
Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. L. (2021). Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability, 13(7), 3725.
Lan, T., He, X., Wang, Q., Deng, O., Zhou, W., Luo, L., Chen, G., Zeng, J., Yuan, S., Zeng, M., Xiao, H., & Gao, X. (2022). Synergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat system. Applied Soil Ecology, 174, 104412.
Li, J., Kwak, J.-H., Chen, J., An, Z., Gong, X., & Chang, S. X. (2021). Canola straw biochars produced under different pyrolysis temperatures and nitrapyrin independently affected cropland soil nitrous oxide emissions. Biology and Fertility of Soils, 57(2), 319-328.
Liu, C., Wang, K., & Zheng, X. (2013). Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences, 10(4), 2427-2437.
Monge-Muñoz, M., Urquiaga, S., Müller, C., Cambronero-Heinrichs, J. C., Zaman, M., Chinchilla-Soto, C., Borzouei, A., Dawar, K., Rodríguez-Rodríguez, C. E., & Pérez-Castillo, A. G. (2021). Nitrapyrin effectiveness in reducing nitrous oxide emissions decreases at low doses of urea in an Andosol. Pedosphere, 31(2), 303-313.
Nadeem, F., Farooq, M., Nawaz, A., & Ahmad, R. (2019). Boron improves productivity and profitability of bread wheat under zero and plough tillage on alkaline calcareous soil. Field Crops Research, 239, 1-9.
Niu, Y., Luo, J., Liu, D., Müller, C., Zaman, M., Lindsey, S., & Ding, W. (2018). Effect of biochar and nitrapyrin on nitrous oxide and nitric oxide emissions from a sandy loam soil cropped to maize. Biology and Fertility of Soils, 54(5), 645-658.
Nozari, R., Hadidi-Masouleh, E., Borzouei, A., Sayfzadeh, S., & Eskandari, A. (2020). Investigating the effect of different tillage methods and nitrapyrin on increasing nitrogen utilization efficiency on physiological and biochemical traits in different wheat cultivars. Archives of Pharmacy Practice, 11(1), 134-150.
O’Callaghan, M., Gerard, E. M., Carter, P. E., Lardner, R., Sarathchandra, U., Burch, G., Ghani, A., & Bell, N. (2010). Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biology and Biochemistry, 42(9), 1425-1436.
Qiao, C., Liu, L., Hu, S., Compton, J. E., Greaver, T. L., & Li, Q. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 21(3), 1249-1257.
Rácz, D., Szőke, L., Tóth, B., Kovács, B., Horváth, É., Zagyi, P., Duzs, L., & Széles, A. (2021). Examination of the productivity and physiological responses of Maize (Zea mays L.) to nitrapyrin and foliar fertilizer treatments. Plants, 10(11), 2426.
Ren, B., Dong, S., Zhao, B., Liu, P., & Zhang, J. (2017). Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Frontiers in Plant Science, 8, 1216.
Ren, B., HU, J., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2020). Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays L.) waterlogged in the field. Journal of Integrative Agriculture, 19(6), 1586-1595.
Ren, B., Li, X., Dong, S., Liu, P., Zhao, B., & Zhang, J. (2018). Soil physical properties and maize root growth under different tillage systems in the North China Plain. The Crop Journal, 6(6), 669-676.
Sadhukhan, R., Jatav, H. S., Sen, S., Sharma, L. D., Rajput, V. D., Thangjam, R., Devedee, A. K., Singh, S. K., Gorovtsov, A., Choudhury, S., & Patra, K. (2022). Biological nitrification inhibition for sustainable crop production. In Plant Perspectives to Global Climate Changes. India: Academic Press. 135-150.
Salem, E. M., Kenawey, M. K., Saudy, H. S., & Mubarak, M. (2022). Influence of silicon forms on nutrients accumulation and grain yield of wheat under water deficit conditions. Gesunde Pflanzen, 74(3), 539-548.
Sánchez-Girón, V., Serrano, A., Hernanz, J. L., & Navarrete, L. (2004). Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. Soil and Tillage Research, 78(1), 35-44.
Scheer, C., Rowlings, D. W., Firrel, M., Deuter, P., Morris, S., & Grace, P. R. (2014). Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia. Soil Biology and Biochemistry, 77, 243-251.
Schmidt, R., Wang, X. B., Garbeva, P., & Yergeau, É. (2022). The nitrification inhibitor nitrapyrin has non-target effects on the soil microbial community structure, composition, and functions. Applied Soil Ecology, 1(171), 104350.
Souza, R. C., Cantão, M. E., Vasconcelos, A. T. R., Nogueira, M. A., & Hungria, M. (2013). Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Applied Soil Ecology, 72, 49-61.
Sowiński, J., & Głąb, L. (2018). The effect of nitrogen fertilization management on yield and nitrate contents in sorghum biomass and bagasse. Field Crops Research, 227, 132-143.
Subbarao, G., Ito, O., Sahrawat, K., Berry, W., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., & Rao, I. (2006). Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Critical Reviews in Plant Sciences, 25(4), 303-335.
Tao, R., Zhao, X., Wu, X., Hu, B., Vanyanbah, K. B., Li, J., & Chu, G. (2021). Nitrapyrin coupled with organic amendment mitigates N2O emissions by inhibiting different ammonia oxidizers in alkaline and acidic soils. Applied Soil Ecology, 166, 104062.
Thompson, K. A., Bent, E., Abalos, D., Wagner-Riddle, C., & Dunfield, K. E. (2016). Soil microbial communities as potential regulators of in situ N2O fluxes in annual and perennial cropping systems. Soil Biology and Biochemistry, 103, 262-273.
Woodward, E. E., Edwards, T. M., Givens, C. E., Kolpin, D. W., & Hladik, M. L. (2021). Widespread use of the nitrification inhibitor nitrapyrin: assessing benefits and costs to agriculture, ecosystems, and environmental health. Environmental Science & Technology, 55(3), 1345-1353.
Xia, X., Zhang, P., He, L., Gao, X., Li, W., Zhou, Y., Li, Z., Li, H., & Yang, L. (2019). Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing. Journal of Integrative Plant Biology, 61(6), 765-777.
Yahaya, S. M., Mahmud, A. A., Abdullahi, M., & Haruna, A. (2022). Recent advances in the chemistry of N, P, K as fertilizer in soil – A review. Pedosphere, 33(3), 385-406.
Zaman, M., Nguyen, M. L., Blennerhassett, J. D., & Quin, B. F. (2008). Reducing NH3, N2O and NO3 –N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biology and Fertility of Soils, 44(5), 693-705.
Zhang, M., Wang, W., Bai, S. H., Zhou, X., Teng, Y., & Xu, Z. (2018). Antagonistic effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate and fungicide iprodione on net nitrification in an agricultural soil. Soil Biology and Biochemistry, 116, 167-170.