نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو

2 دانشیار گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان

3 دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان

چکیده

بمنظور بررسی اثر منابع مختلف ترکیبات گوگردار بهمراه تلقیح باکتری تیوباسیلوس بر گیاه ذرت در شرایط تنش فلزات سرب و روی، آزمایشی بصورت فاکتوریل طرح بلوک‌های کامل تصادفی در گلخانه تحقیقاتی کشاورزی دانشگاه زنجان در سال 1400 اجرا گردید. تیمارهای گوگرد شامل گوگرد عنصری (75/0، 25/1 و 2 گرم برکیلوگرم خاک) گوگرد همراه باکتری تیوباسیلوس (بیوگوگرد) (1، 2 و 3گرم برکیلوگرم خاک) و سولفات‌پتاسیم (5/0، 1 و 5/1گرم برکیلوگرم) بود. نتایج نشان داد که صفات مورفولوژیک، آناتومیک و فیزیولوژیک در مرحله رشد رویشی در تمام تیمارهای اعمال شده معنی‌دار شدند. تیمارهای اعمال شده نسبت به شاهد موجب افزایش میزان کلروفیل، فلورسانس و آنزیم‌ها گردید. این افزایش باعث کاهش دمای برگ، افزایش طول سلول-های برگ و در نتیجه موجب افزایش سطح برگ و سرعت برگ‌دهی در گیاهان ‌گردید. در تیمار گوگرد بهمراه باکتری این افزایش بیشتر بود. اما تیمارهای گوگرد عنصری 2گرم و سولفات‌پتاسیم 5/1 گرم در گیاه تنش ایجاد کردند و موجب کاهش میزان صفات نسبت به شاهد شدند. همچنین گیاهان در خاک آلوده دچار تنش شدند و میزان صفات ذکر شده نیز کاهش یافتند. اما با اعمال تیمارها میزان صفات کاروتنوئید، پروتئین کل و پروکسیداز افزایش یافتند که موجب کاهش تنش در گیاهان شدند و به تبع آن میزان صفات و شاخص‌های رشدی در گیاه نسبت به شاهد در خاک آلوده افزایش یافتند. می‌توان نتیجه گرفت که تیمار گوگرد همراه باکتری در مقایسه با دیگر تیمارها موجب فعال شدن سیستم دفاعی آنزیمی و غیرآنزیمی و متحمل شدن گیاه به تنش گردید. و نهایتا بهبود رشد گیاه را موجب می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of growth of corn in the vegetative stage under Contaminanted soil conditions by applaying sulfur-containing compounds and thiobacillus bacteria

نویسندگان [English]

  • hamzeh mirzaie 1
  • Farid Shekari 2
  • reza fotovat 2
  • mohammad amir delavar 3

1 student college

2 Professor of Plant genetics and products group, Faculty of agriculture. Zanjan university

3 Professor of agrology group, Faculty of agriculture. Zanjan university

چکیده [English]

Investigating the effect of various sources of sulfurous compounds along with the inoculation of Thiobacillus bacteria on corn plants under stress conditions of lead and zinc metals, Factorial experiment of randomized complete blocks design was carried out in the Agricultural Research Greenhouse of Zanjan University in 2021. The treatments include elemental sulfur (0.75, 1.25 and 2 g/kg soil), sulfur with thiobacillus bacteria(biosulfur) (1, 2 and 3 g/kg soil) and potassium sulfate (0.5, 1 and 1.5 g/kg soil). The results showed traits were significant in the vegetative growth stage in all applied treatments. The treatments increased the amount of chlorophyll, enzymes compared to the control. Then decreased the leaf temperature, Increasing the length of leaf cells. also, it increases the leaf area and leaf production rate in plants. This increase was higher in sulfur treatment with bacteria. But the treatments of 2 grams of elemental sulfur and 1.5 grams of potassium sulfate caused stress in the plant and reduced the amount of traits compared to the control. Also, the plants in contaminated soil were stressed and the amount of the mentioned traits also decreased. However, with the application of treatments, the amount of carotenoid, total protein and peroxidase traits increased, which reduced the stress in plants and increased the amount of traits and growth indicators compared to control in contaminated soil. Sulfur treatment with bacteria, compared to other applied treatments, by activating the enzymatic and non-enzymatic defense system of the plant, causes the plant to tolerate stress and improve plant growth.

کلیدواژه‌ها [English]

  • Biosulfur
  • Enzymes
  • leaf surface
  • lead and zinc stress
صارمی‌راد، بابک؛ اسفندیاری، عزت‌اله؛ شکرپور، مجید؛ سفالیان، امید؛ آوانس، آرمن و موسوی، سیدبهمن (1390). تأثیر کادمیوم بر برخی ویژگی‌های مورفولوژیکی و فیزیولوژیکی گندم در مرحله گیاهچه­ای. مجله پژوهش‌ها گیاهی (مجله زیست‌شناسی ایران). 27 (1)، 47- 58.
مزارعی، ایوب، موسوی نیک، سید، محسن، قنبری، احمد، فهمیده، لیلا (1398). اثر محلول­پاشی دی اکسید تیتانیوم بر برخی خصوصیات فیزیولوژیکی مریم گلی (Salvia officinalis L.) تحت تنش خشکی. تنش‌های محیطی در علوم زراعی. 12 (2)، 539-553.
 
Adrees, M., Ali S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148-8162.
Aebi, H. (1984). Catalase in vitro. Methods in Enzymologist, 1105, 121-126.
Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000). Ionic and osmotic effects of NaCl induced inactivation of Photosystems I and II in Synechococcus sp. Plant Physiology, 123(3), 1047-1056. https://doi.org/10.1104/pp.123.3.1047.
Alloway, B. J. (1995). Heavy metal in soils. London: Blackie Academic and Profesional Press.
Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99-110. https://doi.org/10.1016/j.sajb.2017.03.011.
Andra, S. S., Datta, R., Sarkar, D., Makris, K. C., Mullens, C. P., Sahi, S. V., & Bach, S. B. H. (2010). Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil, 326, 171–185.
Anjum, N. A., Umar, S., Ahmad, A., Iqbal, M., & Khan, N. A. (2008). Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul, 54, 271-279.
Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., Sharma, S., Tripathi, D. K., Dubey, N. K., & Chauhan, D. K. (2016). Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in nvironmental Science, 4, 69. https://doi.org/10.3389/fenvs.2016.00069.
Arshad, T., Maqbool, N., Javed, F., Wahid, A., & Arshad, M. U. (2017). Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. Journal of Agricultural Science, 9, 139-146.
Asgher, M., Khan, N. A., Khan, M. I. R., Fatma, M., & Masood, A. (2014). Ethylene production is associated with alleviation of cadmiuminduced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicology and Environmental Safety, 106, 54-61.
Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Physiology, 59, 89-113.
Bashir, H., Ibrahim, M. M., Bagheri, R., Ahmad, J., Arif, I. A., Baig, M. A., & Qureshi, M. I. (2015). Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants, 12(7), plv001. doi:10.1093/aobpla/plv001.
Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148-8162.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry Methods in the Biological Sciences, 72, 248-254.
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymologist, 11, 764-755.
El-Jamal, M., & Salwa, A. R. H. (2003). Counteracting the deleterious effects of lead and cadmium on tomato plants by using yeast, garlic and eucalyptus extracts. Minufiya Journal. Agricultural Research, 28(3), 737-755.
Esfandiari, E., Shakiba, M. R., Mahboob, S. A., Alyari, H., & Shahabivand, S. (2008). The Effect of Water Stress on the Antioxidant Content, Protective Enzyme Activities, Proline Content and Lipid Peroxidation in Wheat Seedling. Pakistan Journal of Biological Sciences, 11(15), 1916-1922.
Fodor, F. (2006). Heavy metals competing with iron under conditions involving phytoremediation. In Iron nutrition in plants and rhizospheric microorganisms. edited by Barton, P. L. L., & Abadía, J.
Amesterdam: Springer.
Genty, B., Briantais, J. M., & Baker, N. R. (1989). Relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochimica et Biophysica Acta, 990, 87-92.
Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signaling & Behavior, 6, 215-222.
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. H. (2003). Effects of silicon on growth of wheat under drought. Journal Plant Nutrition, 26, 1055-1063.
Guo, Z., Ou, W., Lu, S., & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44, 828-836.
Gupta, V. R., & St Mehla, I. S. (1980). Influence of sulphur on the yield and concentration of Cu, Mn. Fe and Mo in berseem (Trifolium alexandrium) grown in two different soils. Plant Soil, 24, 227-236.
Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., & Hawrylak-Nowak, B. (2018). The Role of Sulfur in Plant Abiotic Stress Tolerance. Molecular Interactions and Defense Mechanisms. In Plant Nutrients and Abiotic Stress Tolerance. Singapore: Springer.
Hu, J. Z., Shi, G. X., Xu, Q. S., Wang, X., Yuan, Q. H., & Du, K. H. (2007). Effect of Pb on the active oxygen scavenging enzyme activities and ultra structure in Potamogeton crispus leaves. Russian Journal of Plant Physiology, 54, 414-419.
Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32, 979-986.
Kacar, B., & Katkat, A.V. (2007). Plant Nutrition. Ankara: Nobel Press.
Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 20, 211-214.
Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S., & Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9-18.
Knight, H., & Knight, M. R. (2001). Abiotic stress signaling pathways: specificity and cross-talk, Trends is Plant Science, 6, 262-267.
 Kruse, C.,  Haas, H. F., Jost, R., Reiser, B., Reichelt, M., Wirtz, M., Gershenzon, J., Schnug, E., & Hell, R. (2012). Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. Journal of Plant Physiology, 169, 740-743.
Kumar, S., Gaur, B. L., & Sumeriya, H. K. (2004). Effect of nitrogen, phosphorus and Sulphur levels on growth and oil yield of taramira under rainfed conditions of southern Rajasthan. Haryana. Indian Journal of Agronomy, 20(1), 6-4.
Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
Lou, L., Kang, J., Pang, H., Li, Q., Du, X., Wu, W., Chen, J., & Lv, J. (2017). Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism. International Journal of Molecular Sciences. 18(8), 1628. https://doi.org/10.3390%2Fijms18081628.
MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65-84.
Mazarie, A., Mousavi-nik, S. M., Ghanbari, A., & Fahmideh, L. (2019). Effect of titanium dioxide spraying on physiological characteristics of sage (Salvia officinalis L.) under water stress. Environmental Stresses in Crop Sciences, 12(2), 539-559. (In Persian).
Mukherjee, D., & Singh, R. K. (2002). Influence of sulphur, iron and silicon nutrition on growth and yield of irrigated mustard. Haryana Journal of Agronomy, 11(1 & 2), 20-2.
Muller, P., Li, X. P., & Niyogi, K. K. (2001). Non-Photochemical quenching, A Response to excess light energy. Plant Physiology, 125, 1558-1566.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant & Cell Physiology, 22, 867-880.
Neilsen, D., Hogoe Li, K., & Hoyt, P. B. (1993). Oxidation of elemental sulphur and acidulation of calcareous orchard soils in southern British Colombia. Canadian Journal of Soil Science, 93, 103 -116.
Pallas, J. J. E., Michel, B. E., & Harris, D. G. (1967). Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials. Plant Physiology, 42, 76-88.
Pinto, A., De Varennes, A., Fonseca, R., & Teixeira, D. M. (2015). Phytoremediation of soils contaminated with heavy metals: Techniques and strategies. Switzerland: Springer.
Prasad, M. N. V. (1997). Trace metals. In: Plant Ecophysiology. New York: Wiley.
Ramzani, P. M. A., Iqbal, M., Kausar, S., Ali, S., Rizwan, M., & Virk, Z. A. (2016). Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environmental Science and Pollution Research, 23, 18585–18595. https://doi.org/10.1007/s11356-016-7038-x.
Rathore, S. S., Shekhawat, K., Kandpal, B. K., Premi, O. P., Singh, S. P., Singh, G. C., & Singh, D. (2015). Sulphur management for increased productivity of Indian mustard: a review. Annals of Plant and Soil Research, 17(1), 1-12.
Rausch, T., & Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Science, 10, 503-509.
Reddy, A. M., Kumar, S. G., Jyothsnakumari, G., Thimmanaik, S., & Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc. and bengalgram (Cicer arietinum L.). Chemosphere, 60(1), 97-104.
Ritchie, J. T., & NeSmith, D. S. (1991). Temperature and crop development. In: Modeling Plant and Soil Systems. Edited by Hanks, R. J., & Ritchie, J. T. Madison: Wiley. https://doi.org/10.2134/agronmonogr31.c2.
Rivas-San, V. M., & Plasencia, J. (2011). Salicylic acid beyond defence its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338.
Riyazuddin, R., Nisha, N., Ejaz, B., Khan, M. I. R., Kumar, M., Ramteke, P. W., & Gupta, R. (2022). A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 12(1), 43.
Ruley, A. T., Nilesh, C. S., & Shivendra, V. S. (2004). Antioxidant defense in a lead accumulating plants, Sesbania dormancies. Plant Physiology and Biochemistry, 41, 899-906.
Sanita, d., Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105-130.
Santos, J. O., Andrade, C. A., Dázio de Souza, K. R., Santos, M. O., Brandão, I. R., Alves, J. D., & Santos, I. S. (2019). Impact of zinc stress on biochemical and biophysical parameters in Coffea arabica seedlings. Journal of Crop Science and Biotechnology, 22(3), 253-264.
SaremiRad, B., Esfandirie, A. A., ShekarPoor, M., Sofalian, A., Avance, A., & Moosavi, S. B. (2011). Effect of cadmium on some morphology and physiology characteristics of weath in germination stage. Journal of plant Researches, 27(1), 47-58. (In Persian).
Schreiber, U., Bilger, W., Hormann, H., & Neubauer, C. (1998). Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Photosynthesis: a Comprehensive Treatise. Edited by Raghavendra, A. S. Cambridge: Cambridge University Press.
Seregin, I. V., & Ivanov, V. B. (2001). Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology, 1608-3407, 48(4), 523-544.
Singh, R., Tripathi, R. D., Dwivedi, S., Kumar, A., Trivedi, P. K., & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyteNajas indicaare related to antioxidant system. Bio Resource Technology, 101, 3025-3032.
Sofy, M. R., Seleiman, M. F., Alhammad, B. A., Alharbi, B. M., & Mohamed, H. I. (2020). Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy, 10(5), 699.
Soliman, M. F., Kostandi, S. F., & Beusichem Van, M. L. (1992). Influence of Sulfur and Nitrogen Fertilizer on the Uptake of Iron, Manganese and Zinc by Corn Plants Grown in Calcareous Soil. Commu. Communications in Soil Science and Plant Analysis, 23, 1217-1300.
Srivastava, S., Tripathi, R. D., & Dwivedi, U. N. (2004). Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa – an angiospermic parasite. Journal of Plant Physiology, 161(6), 665-674.
Tisdal, S. L., Nelson, W. L., & Beaton, J. D. (1984). Soil Fertility and Fertilizers. New York: McMillon Publishing Company.
Vecera, Z., Mikuska, P., Zdráhal, Z., Docekal, B., Buckovaz, M., Tynova, Z., Parizek, P., Mosna, J., & Marek. J. (1999). Soil and plants sampling procedure and samples treatment. Analysis of phytotoxic and organometallic elements. Analysis of polycyclic aromatic hydrocarbons. Fertilia partners protocols page. Environmental analytical chemistry Department, Institute of Analytical Chemistry. Academy of Sciences of the Czech Republic, 97, 611. 42.
Ventrella, A., Catucci, L., Piletska, E., Piletsky, S., & Agostiano, A. (2009). Interactions between heavy metals and photosynthetic materials studied by optical techniques. Ioelectrochemistry, 77, 19-25.Wang, G., & Xu, Z. (2013). The effects of biochar on germination and growth of wheat in different saline-alkali soil. Asian Agricultural Research, 5, 116-119.
Warrington, I. J., & Kanemasu, E. T. (1983). Corn growth response to temperature and photoperiod. II: Leaf initiation and leaf appearance rates. Agronomy Journal, 75, 755 -761.
Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. (2005). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultra structure of chloroplasts in two cool-season Turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274-285.
Yahaghi, Z., Shirvani, M., Nourbakhsh, F., & Pueyo, J. J. (2019). Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. South African Journal of Botany, 124, 573-582.
Yamane, Y., Kashino, Y., Koile, H., & Satoh, K. (1997).  Increase in the fluorescence F0 level reversible inhibition of Photosystem II reaction center by high-temperature treatments in higher plants. Photosynthesis Research, 52, 57-64.