نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زراعی و اصلاح نباتات، دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، تهران، ایران. رایانامه: amin.arjmand@ut.ac.ir

2 نویسنده مسئول، گروه علوم زراعی و اصلاح ‌نباتات، دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، تهران، ایران. رایانامه: mebrahimi@ut.ac.ir

3 گروه زراعت و اصلاح ‌نباتات، دانشکدگان کشاورزی و منابع طبیعی کرج، دانشگاه تهران، تهران، ایران. رایانامه: mrghanad@ut.ac.ir

4 گروه علوم زراعی و اصلاح ‌نباتات، دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، تهران، ایران. رایانامه: na_moradi@ut.ac.ir

چکیده

هدف: گل‌ختمی متعلق به جنس Althaea و خانواده Malvaceae می‌باشد. این گیاه بومی آسیا، جنوب آفریقا و آمریکا است. این گیاه در سراسر ایران در مراتع طبیعی یافت می‌شود. هدف از انجام این پژوهش شناسایی بهترین اکوتیپ‌های گل‌ختمی از نظر صفات فیتوشیمیایی موردمطالعه در این آزمایش و معرفی بهترین اکوتیپ‌ها به‌منظور پژوهش‌های بیش‌تر و استفاده به‌عنوان والدین تلاقی در پروژه‌های به‌نژادی می‌باشد.
روش پژوهش: در این پژوهش صفات فیتوشیمیایی در نُه اکوتیپ و سه گونه مختلف بررسی شد. این صفات شامل میزان فلاونوئید کل، محتوی آنتوسیانین کل، میزان فعالیت بازدارندگی آنزیم تیروزیناز و میزان فعالیت بازدارندگی آنزیم کولین استراز بود.
یافته‌ها: نتایج نشان داد که از نظر میزان فلاونوئید و میزان فعالیت بازدارندگی آنزیم استیل‌کولین‌استراز اکوتیپ کرمانشاه از گونه A. officinalis به‌ترتیب 47/18 میلی‌گرم کوئرستین در گرم عصاره و 37/28 (mg/ml مبتنی بر ‏50‏IC)، از نظر میزان آنتوسیانین اکوتیپ بوشهر متعلق به گونه A. ficifolia، 45/6 میلی‌گرم بر گرم عصاره خشک و از نظر میزان فعالیت بازدارندگی آنزیم تیروزیناز اکوتیپ یزد با 25/84 (mg/ml مبتنی بر 50IC)، بالاترین مقادیر را داشتند. پس از محاسبه ضرایب همبستگی پیرسون مشخص ‏شد که بین صفات موردبررسی همبستگی مثبت و معنادار وجود دارد. در مقایسات اورتوگونال نیز اکوتیپ‌های کرمانشاه، مازندران و اصفهان متعلق به گونه A. officinalis از نظر میزان فلاونوئید و میزان فعالیت بازدارندگی آنزیم کولین‌استراز دارای بالاترین مقدار بودند. در تجزیه خوشه‌ای به‌روش WARD اکوتیپ­های مربوط به هر گونه در گروه مجزا قرار گرفتند.
نتیجه‌گیری: بنابراین با توجه به تنوع بالا بین گونه­ها و اکوتیپ­های موردمطالعه، به‌منظور اصلاح و گزینش صفات فیتوشیمیایی در گل ختمی از اکوتیپ­های بررسی‌شده در این آزمایش می‌توان به‌عنوان جمعیت پایه و والدین اولیه تلاقی استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of phytochemical traits in different ecotypes of marshmallow (Althaea spp.)

نویسندگان [English]

  • Amin Arjmand 1
  • Mohsen Ebrahimi 2
  • MohammadReza Bihamta 3
  • Narges Moradi 4

1 Department of Agricultural Sciences and Plant Breeding, Aburihan Faculty of Agricultural Technology, University of Tehran, Tehran, Iran. E-mail: amin.arjmand@ut.ac.irTechnology, University of Tehran, Tehran, Iran

2 Corresponding author, Department of Agricultural Sciences and Plant Breeding, Aburihan Faculty of Agricultural Technology, University of Tehran, Tehran, Iran. E-mail: mebrahimi@ut.ac.ir

3 Department of Agriculture and Plant Breeding, Karaj College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran. E-mail: mrghanad@ut.ac.ir

4 Department of Agricultural Sciences and Plant Breeding, Aburihan Faculty of Agricultural Technology, University of Tehran, Tehran, Iran. E-mail: na_moradi@ut.ac.ir

چکیده [English]

Objective: Marshmallow (Althaea spp.) is a plant belonging to the Malvaceae family and is native to Asia, South Africa, and America. It is found in Iranian natural pastures throughout the country. The purpose of this research is to identify the best ecotypes of Golkhtami in terms of phytochemical traits studied in this experiment and to introduce the best ecotypes for further research and to be used as crossbreeding parents in crossbreeding projects.
Methods: In this study which was investigated in nine ecotypes and three different species, phytochemical traits including total flavonoid content, total anthocyanin content, tyrosinase enzyme inhibitory activity, and cholinesterase inhibitory activity were evaluated in different ecotypes of marshmallow.
Results: The results showed that the Kermanshah ecotype of Althaea officinalis had the highest amount of flavonoids (18.47 mg of quercetin per gram of extract) and cholinesterase inhibitory activity (28.37 mg/ml based on IC50), while the Bushehr ecotype of A. ficifolia had the highest amount of anthocyanins (6.45 mg) and the Yazd ecotype of A. officinalis had the highest tyrosinase enzyme inhibitory activity (84.25 mg/ml based on IC50). Pearson's correlation coefficients revealed a positive and significant correlation between the investigated traits. In orthogonal comparisons, the Kermanshah, Mazandaran, and Isfahan ecotypes of A. officinalis had the highest levels of flavonoids and cholinesterase inhibitory activity. Cluster analysis by the WARD method showed that the ecotypes related to one species were placed in one group.
Conclusion: These findings suggest that the studied species and ecotypes have high diversity, which can be useful for improvement and selection of phytochemical traits in marshmallow. The investigated ecotypes can be used as the base population and initial parents of the cross in further experiments.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Cholinesterase enzyme
  • Ecotype
  • Marshmallow
اشراقی، سید سعید؛ امین، غلامرضا و فخری، سوسن (1388). مطالعه اثرات ضدباکتریایی و فیتوشیمیایی عصاره تام دوازده گونه از گیاهان بومی ایران بر سوش‌های بیماری‌زای نوکاردیا. تحقیقات دامپزشکی و فرآورده‌های بیولوژیک (پژوهش و سازندگی)، 22 (1)، 62-73.
مطهری‌نیا، یوسف؛ رضایی، محمدعلی؛ زندی، فرید؛ حسینی، وریا؛ رشیدی، احمد؛ احمدی‌نیاز، مبین؛ امینی‌پور، ادریس و رحمانی، محمدرضا (1390). مقایسه اثر ضد قارچی عصاره ریشه شیرین‌بیان، گیاه ختمی و کتوکونازول بر مالاسزیا فورفور. ارمغان دانش، 16 (5 (65))، 425-432.
 
References
AC, H. (2004). No TitleMedicinal plants, conservation and livelihoods. Biodiversity and Conservation, 13, 1477-1517.
Akbari, A., Izadi-Darbandi, A., Bahmani, K., Farhadpour, M., Ebrahimi, M., Ramshini, H., & Esmaeili, Z. (2023). Assessment of phenolic profile, and antioxidant activity in developed breeding populations of fennel (Foeniculum vulgare Mill). Biocatalysis and Agricultural Biotechnology, 48(8), 102639. https://doi.org/10.1016/j.bcab.2023.102639
Al-Snafi, A. E. (2013). The Pharmaceutical importance of Althaea officinalis and Althaea rosea: A review. International Journal of PharmTech Research, 5(3), 1378-1385.
Ali Shah, S. M., Akhtar, N., Akram, M., Shah, P. A., Saeed, T., Ahmed, K., & Asif, H. M. (2011). Pharmacological activity of Althaea officinalis L. Journal of Medicinal Plant Research, 5(24), 5662-5666.
Amessis-ouchemoukh, N., Madani, K., Falé, P. L. V, Serralheiro, M. L., Eduarda, M., & Araújo, M. (2014). Antioxidant capacity and phenolic contents of some Mediterranean medicinal plants and their potential role in the inhibition of cyclooxygenase-1 and acetylcholinesterase activities. Industrial Crops & Products, 53, 6-15. https://doi.org/10.1016/j.indcrop.2013.12.008
Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods, 10(3), 178-182.
De Pascual-Teresa, S., & Sanchez-Ballesta, M. T. (2008). Anthocyanins: From plant to health. Phytochemistry Reviews, 7(2), 281-299. https://doi.org/10.1007/s11101-007-9074-0
Eshraghi, Seyed Saeed, Amin, G., & Fakhri, S. (1388). Studying the antibacterial and phytochemical effects of total extracts of 12 species of native Iranian plants on Nocardia pathogenic strains. Veterinary research and biological products, 22(1), 62-73. SID. https://sid.ir/paper/200805/fa. (In Persian).
Fahamiya, N., Shiffa, M., Aslam, M., & Muzn, F. (2016). Unani perspective of Khatmi (Althaea officinalis). Journal of Pharmacognosy and Phytochemistry, 5(6), 357-360.
Golshani, Y., Zarei, M., & Mohammadi, S. (2015). Acute/Chronic Pain Relief: Is Althaea officinalis Essential Oil Effective? Avicenna Journal of Neuro Psych Physiology, 2(4). https://doi.org/10.17795/ajnpp-36586
Gupta, V. K., Fatima, A., Faridi, U., Negi, A. S., Shanker, K., Kumar, J. K., Rahuja, N., Luqman, S., Sisodia, B. S., Saikia, D., Darokar, M. P., & Khanuja, S. P. S. (2008). Antimicrobial potential of Glycyrrhiza glabra roots. Journal of ethnopharmacology, 116(2), 377-380. https://doi.org/10.1016/j.jep.2007.11.037.
Henriques, J. F., Serra, D., Dinis, T. C. P., & Almeida, L. M. (2020). The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. International journal of molecular sciences, 21(22), 8653. https://doi.org/10.3390/ijms21228653.
Hseu, Y. C., Cheng, K. C., Lin, Y. C., Chen, C. Y., Chou, H. Y., Ma, D. L., Leung, C. H., Wen, Z. H., & Wang, H. M. (2015). Synergistic Effects of Linderanolide B Combined with Arbutin, PTU or Kojic Acid on Tyrosinase Inhibition. Current Pharmaceutical Biotechnology, 16(12), 1120-1126. https://doi.org/10.2174/1389201016666150907112819.
Iauk, L., Bue, A. M. Lo, Milazzo, I., Rapisarda, A., Blandino, G., & Melissa, L. (2003). Antibacterial Activity of Medicinal Plant, 604(5), 599-604.
Jo, Y., Seo, G., Yuk, H., & Lee, S. (2012). Antioxidant and tyrosinase inhibitory activities of methanol extracts from Magnolia denudata and Magnolia denudata var. purpurascens flowers. Food Research International, 47(2), 197-200. https://doi.org/10.1016/j.foodres.2011.05.032.
Kianitalaei, A., Feyzabadi, Z., Hamedi, S., & Qaraaty, M. (2019). Althaea Officinalis in Traditional Medicine and modern phytotherapy. Journal of Advanced Pharmacy Education & Research, 9(2), 154-161.
Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2012). Microencapsulation of Morinda citrifolia L. extract by spray-drying. Chemical Engineering Research and Design, 90(5), 622-632.
Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., & Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry, 101(4), 1727-1741. https://doi.org/10.1016/j.foodchem.2006.01.031.
Legay C. (2000). Why so many forms of acetylcholinesterase?. Microscopy research and technique, 49(1), 56-72. https://doi.org/10.1002/(SICI)1097-0029(20000401)49:1<56::AID-JEMT7>3.0.CO;2.
Młodzińska, E. (2009). Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biologica Cracovienca Series Botanica, 51(1), 7-16.
Motaharinia, Y., Rezaei, M.A., Zandi, F., Hosseini, V., Rashidi, Ahmad, Ahmadniaz, Mobin, Aminipour, Idris, & Rahmani, Mohammadreza. (2011). Comparing the antifungal effect of licorice root extract, marshmallow plant and ketoconazole on Malassezia furfur. Armaghane Danesh, 16(5), 425-432. SID. https://sid.ir/paper/77465/fa. (In Persian).
Miguel, M. G. (2011). Anthocyanins: Antioxidant and / or anti-inflammatory activities, 01(06), 7-15.
Valiei, M. (2011). Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. Journal of Medicinal Plants Research, 5(32), 6972-6976. https://doi.org/10.5897/jmpr11.963
Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current neuropharmacology, 11(4), 388-413.
Šutovská, M., Nosáľová, G., Šutovský, J., Fraňová, S., Prisenžňáková, L., & Capek, P. (2009). Possible mechanisms of dose-dependent cough suppressive effect of Althaea officinalis rhamnogalacturonan in guinea pigs test system. International Journal of Biological Macromolecules, 45(1), 27-32.
Xue, T. T., Xu, H. B., Tang, Z. S., Duana, J. A., Liu, H. B., Shi, X. B., & Song, Z. X. (2021). Progress in chemical compositions and pharmacological activities of Althaea officinalis. Medicine Research, 5(2), 210002.
Sendker, J., Bo, I., Lengers, I., Brandt, S., Jose, J., Stark, T., Hofmann, T., Fink, C., Abdel-aziz, H., & Hensel, A. (2017). Phytochemical characterization of low molecular weight constituents from marshmallow roots (Althaea officinalis) and inhibiting effects of the aqueous extract on human hyaluronidase-1. Journal of Natural Products, 80(2), 290-297. https://doi.org/10.1021/acs.jnatprod.6b00670.
Siddiqui, M. (2021). Phytochemical Analysis of Some Medicinal Plants. Liaquat Medical Research Journal, 3(1), 1-5. https://doi.org/10.38106/lmrj.2021.36.
Sutovska, M., Capek, P., Franova, S., Joskova, M., Sutovsky, J., Marcinek, J., & Kalman, M. (2011). Antitussive activity of Althaea officinalis L. polysaccharide rhamnogalacturonan and its changes in guinea pigs with ovalbumine-induced airways inflammation. Bratislavské lekárske listy, 112(12), 670-675.
Ullah, S., Son, S., Yun, H. Y., Kim, D. H., Chun, P., & Moon, H. R. (2016). Tyrosinase inhibitors: a patent review (2011-2015). Expert Opinion on Therapeutic Patents, 26(3), 347-362.
Zheng, Z., Tan, H., Chen, J., & Wang, M. (2013). Fitoterapia Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure–activity relationship study. Fitoterapia, 84, 242-247. https://doi.org/10.1016/j.fitote.2012.12.006