نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی و دانشگاه جامع علمی-کاربردی، اردبیل، ایران.

10.22059/jci.2022.340264.2692

چکیده

هدف: با توجه به صدمات ناشی از سرما و یخبندان در مناطق معتدل و سرد، استفاده از راه‌کارهای افزایش‌دهنده تحمل به سرما برای افزایش بقای زمستانی و استقرار گیاهچه‌ها اهمیت دارد.
روش پژوهش: به‌منظور بررسی تأثیر کاربرد نانو‌سلنیوم در بهبود شاخص‌های فتوسنتزی، صفات بیوشیمیایی و افزایش تحمل به سرمای کلزای پاییزه، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشگاه محقق اردبیلی در سال 98-1397 انجام گرفت. تیمارهای آزمایشی شامل محلول‌پاشی غلظت‌های نانوسلنیوم (صفر (شاهد)، 25 و 50 میلی‌گرم در لیتر) در مرحله 8-6 برگی بود.
یافته­ ها: نتایج نشان داد محلول‌پاشی بوته‌های کلزا با غلظت‌های مختلف نانوسلنیوم موجب افزایش معنی‌دار محتوای نسبی آب برگ، رنگیزه‌های فتوسنتری، فعالیت آنزیم‌های آنتی‌اکسیدانی، بقای زمستانه بوته‌ها و عملکرد دانه‌ گردید. بیش‌ترین محتوای نسبی آب برگ، فلورسانس بیشینه (Fm)، حداکثر کارایی کوانتومی فتوسیستم II (Fv/Fm)، فلورسانس متغیر (Fv)، محتوای پرولین و فعالیت آنزیم‌های کاتالاز و پراکسیداز در بوته‌های محلول‌پاشی‌شده با 50 میلی‌گرم در لیتر نانوسلنیوم به‌دست آمد. نانوسلنیوم از طریق افزایش میزان Fv/Fm، فعالیت آنزیم‌های آنتی‌اکسیدانی و میزان اسید‌آمینه پرولین، موجب افزایش درصد زنده‌مانی بوته‌های کلزا به میزان 18/7 تا 94/8 درصد شد. محلول‌پاشی بوته‌های کلزا با غلظت‌های 25 و 50 میلی‌گرم در لیتر نانوسلنیوم سبب افزایش عملکرد دانه به‌ترتیب به میزان 10/28 و 19/34 درصد در مقایسه با تیمار شاهد (بدون محلول‌پاشی) شد.
نتیجه­ گیری: به‌طور کلی نتایج نشان داد که کاربرد نانوسلنیوم با غلظت 50 میلی‌گرم در لیتر تأثیر مثبت و معنی‌داری بر صفات بیوشیمیایی و شاخص‌های فتوسنتزی کلزا داشت که این موضوع سبب شد تا تحمل به سرما ‌در بوته‌های کلزا افزایش یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Improvement of photosynthetic and biochemical characteristics and cold tolerance in winter oilseed rape (Brassica napus L. Var napus) via selenium nanoparticles application in the rosette stage

نویسندگان [English]

  • parisa sheikhzadeh 1
  • Gholam Behzad 1
  • Nasser Zare 1
  • Mitra Rostami 2

1 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University and University of Applied Sciences and Technology, Ardabil, Iran.

چکیده [English]

Objective: Due to the injuries caused by cold and frost in temperate and cold regions, utilizing strategies that increase cold tolerance to enhance the winter survival and establishment of seedlings is imperative.
Methods: To investigate the effects of selenium nanoparticles application on photosynthetic and biochemical indices and cold tolerance of oilseed rape, an experiment was carried out based on a randomized complete blocks design with three replications at the research farm station of the University of Mohaghegh Ardabili in 2018. The treatments consisted of foliar application of selenium nanoparticles (0 [control], 25, and 50 mg L-1) applied at the 6-8 leaves stage.
Results: The results demonstrated that selenium nanoparticle application significantly increased the RWC, photosynthetic pigments, antioxidant enzyme activity, winter survival, and grain yields. The highest RWC, maximal flourescnece (Fm), highest photochemical efficiency of photosystem II (Fv/Fm), and variable fluorescence (Fv), proline content, and the activity of catalase and peroxidase enzymes were obtained with the foliar application of 50 mg L-1 selenium nanoparticles. Selenium nanoparticles application significantly increased the winter survival of oilseed rape plants by about 7.18 to 8.94 percent, by improving the Fv/Fm, the activity of the antioxidant enzymes, and proline content. Foliar application of 25 and 50 mg L-1 selenium nanoparticles resulted in about 28.10 and 34.19 percent increase in grain yield of oilseed rape as compared to the control (no spraying) treatment, respectively.
Conclusion: In general, the results demonstrated that applying 50 mg L-1 selenium nanoparticles had positive and significant effects on the photosynthetic and biochemical characteristics of winter oilseed rape, which resulted in the increased cold tolerance of the oilseed rape plants.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Chlorophyll fluorescence
  • Foliar application
  • Oilseeds
  • Winter survival
ابوالقاسمی، رضا و حقیقی، مریم (1396). بررسی تغییرات گوجه‌فرنگی گلخانه‌ای تیمارشده با عنصر مفید به شکل فلزی و نانو فلزی. فرایند و کارکرد گیاهی، 19(6)، 162-153.
افشار محمدیان، منصور؛ امیدی پور، مطهره و جمال امیدی، فاطمه (1397). اثر سطوح مختلف تنش خشکی بر شاخص‌های فلورسانس کلروفیل دو رقم لوبیا. پژوهش‌های گیاهی، 31(3)، 511-525.
بای‌بوردی، احمد (1395). تأثیر زئولیت و محلول‌پاشی سلنیوم و سیلسیوم بر عملکرد، اجزای عملکرد و برخی صفات فیزیولوژیک کلزا تحت شرایط تنش شوری. پژوهش‌های زراعی ایران، 14(1) 154-170.
بذل، شیوا؛ کریمی، روح الله؛ ارشادی، احمد؛ شاهبداغلو، علیرضا و رسولی، موسی (1394). اثر کاربرد برگی متیل‌جاسمونات بر تحمل به سرمای دانهال‌های خیار گلخانه‌ای رقم نگین. به‌زراعی کشاورزی، 17(2)، 441-455.
پاسبان اسلام، بهمن (1392). اثر تاریخ‌ کاشت‌های مختلف بر عملکرد و اجزای عملکرد ارقام کلزای پاییزه. علوم گیاهان زراعی ایران، 44( 1)، 1-8.
پاییزی، مرضیه و شریعتی، منصور (1390). بررسی اثر تنش دمای پایین بر عملکرد فتوسیستم II در جلبک Dunaliella salina با استفاده از کینتیک فلوئورسنس کلروفیل a. مجله سلول و بافت، 2(4)، 395-405.
جان‌محمدی، محسن؛ توکل افشاری، رضا؛ محفوظی، سیروس؛ علیزاده، هوشنگ؛ کامل، مسعود و خیاوی، مجید (1391). ارتباط بین نمو فنولوژیکی، شاخص‌های فیزیولوژیکی و تحمل به انجماد در گندم و چاودار زمستانه تحت شرایط مزرعه در مناطق معتدل و سرد. مجله تولید گیاهان زراعی، 3(2)، 115-137.
جلیلیان، مهدی؛ دهداری، مسعود؛ امیری فهلیانی، رضا و موحدی دهنوی، محسن (1396). بررسی تحمل به سرما در ارقام مختلف چغندرقند (.Beta vulgaris L) در مرحله گیاهچه‌ای. تنش‌های محیطی در علوم زراعی، 10(3)، 490-475.
حسنی، زبیده؛ پیردشتی، همت الله، یاسر، یعقوبیان؛ زمان نوری، محمد (1393). کاربرد تکنیک فلورسانس کلروفیل برای شناسایی ژنوتیپ‌های متحمل به سرمای هوا و آب در گیاه برنج (Oryza sativa L.). مجله سلول و بافت. 2(5)، 195-206.
خادمی آستانه، رزیتا؛ طباطبائی، سید جلال و بلندنظر، صاحبعلی (1396). تأثیر سلنیوم بر روی عملکرد و ویژگی‌های رویشی کلم تکمه‌ای کشت‌شده در هیدروپونیک. علوم باغبانی، 31(1)، 167-179.
خاوری‌نژاد، رمضانعلی؛ گوشه‌گیر، زینب و سعادتمند، سارا (1389). بررسی اثرات برهمکنش سلنیوم و مولیبدن بر محتوی رنگیزه‌های فتوسنتزی برگ گوجه‌فرنگی (Lycopersicom esculentum Mill.). فیزیولوژی محیطی گیاهی، 5(17)، 23-14.
خلیلی محله، جواد و رشدی، محسن (1387). اثر محلول‌پاشی عناصر کم‌مصرف بر خصوصیات کمی و کیفی ذرت سیلویی 704 در خوی. نهال و بذر. 24(2)، 281-293.
دهقانی بیدگلی، رضا (1398). بررسی اثر نانوذره سلنیوم بر جوانه‌زنی و برخی ویژگی‌های مورفوفیزیولوژیکی گون پنبه‌ای (Astragalus gossypinus Fisher) در محیط کشت MS. تحقیقات مرتع و بیابان ایران. 26(4)، 1055-1068.
ساجدی، نورعلی و مدنی، حمید (1396). بهبود برخی صفات فیزیولوژیک، عملکرد و اجزای عملکرد گندم و جو با استفاده ‏از سلنیوم در شرایط دیم. اکوفیزیولوژی گیاهان زراعی، 11(1(41)،30-17.
ساسانی، شهریار؛ توکل افشاری، رضا و محفوظی، سیروس (1392). ارتباط تجمع برخی متابولیت‌ها با سازوکارهای فیزیولوژیک و بیوشیمیایی تحمل سرما و انجماد در گندم نان. علوم گیاهان زراعی ایران، 44(2)، 327-345.
شیری، محمدرضا و چوکان، رجب (1396). ارزیابی تحمل به تنش خشکی هیبریدهای ذرت دانه‌ای. پژوهشنامه اصلاح گیاهان زراعی، ۹ (۲۱)، ۸۹-۹۹.
عابدینی، معصومه؛ قره باغی، میثم و مرادخانی، سکینه (1400). تأثیر کاربرد ریشه‌ای و برگی سلنیوم بر برخی پاسخ‌های فیزیولوژیکی و بیوشیمیایی گیاه گندم (Triticum aestivum L.) تحت تنش شوری. فیزیولوژی محیطی گیاهی. 16(62)، 95-108.
عقیقی شاهوردی، مهدی؛ امیدی، حشمت و طباطبایی، سید جلال (1396). اثر محلول‌پاشی سلنیوم، بور و آهن بر برخی صفات فیزیولوژیک و گلیکوزیدهای استویا (Stevia rebaudiana Bertoni) تحت تنش شوری. تحقیقات گیاهان دارویی و معطر ایران، 33(6)، 1033-1017.
کرمی‌معلم، سمانه؛ معالی امیری، رضا؛ وفایی، هوتن و نظیری، یاسمن (1395). ارزیابی فعالیت برخی از آنزیم‌های دفاعی نخود (Cicer arietinum L.) تحت تنش سرما. مجله بیوتکنولوژی کشاورزی. 8(4)، 98-85.
گوهریان، علیرضا؛ شیرانی‌راد، امیرحسین؛ معاونی، پیام؛ مظفری، حمید و ثانی، بهزاد (1399). محلول‎پاشی سلنیوم و روی به‌منظور بهبود عملکرد و اجزای عملکرد ژنوتیپ‎های کلزا در شرایط تاریخ‎های کشت رایج و تأخیری. دانش کشاورزی و تولید پایدار، 30(2)، 157-176.
منیری‌فر، حسن و صادق‌زاده، محمد ابراهیم (1393). بررسی تحمل به سرما در تعدادی از اکوتیپ‌های یونجه (Medicago sativa L.) تحت شرایط مزرعه. تنش‌های محیطی در علوم زراعی، 7(1)، 93-103.
نباتی، جعفر؛ نظامی، احمد؛ حسن‌فرد، علیرضا و حقیقت شیشوان، ژاله (1397). بررسی روند تغییرات عوامل فلورسانس کلروفیل در طی تنش یخ‌زدگی در دو توده باقلا (Vicia faba L.). پژوهش‌های حبوبات ایران، 9(2)، 150-139.

 

References

Abbas, S. M. (2012). Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology and Biochemistry, 8(1), 268-286.
Abedini, M., Garebaghi, M., & Moradkhani, S. (2021). The effect of root and foliar application of selenium on some physiological and biochemical responses of wheat (Triticum aestivum L.) under salt stress. Journal of Plant Plant Environmental Physiology, 16(62), 95-108. (In Persian).
Abolghasemi, R., & Haghighi, M. (2018). Study of changes in greenhouse tomatoes treated with beneficial elements in the form of metal and nanometals. Journal of Plant Process and Function, 6(19), 153-162. (In Persian).
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3.
Afshar Mohamadian, M., Omidipour, M., & Jamal Omidi, F. (2018). Effect of different drought stress levels on chlorophyll fluorescence indices of two bean cultivars. Journal of Plant Research (Iranian Journal of Biology), 31(3), 511-525. (In Persian).
Aghighi Shahverdi, M., Omidi, H., & Tabatabaei, S. J.  (2018). Effect of foliar application of selenium, boron and iron on some physiological traits and glycosides of stevia (Stevia rebaudiana Bertoni) under salinity stress. Iranian Journal of Medicinal and Aromatic Plants, 33(6), 1017-1033. (In Persian).
Ajiboso, S. O., & Adenuga, G. A. (2012). The influence of zinc and selenium on some biochemical responses of Vigna unguiculata and Zea mays to water deficit condition and rehydration. An International Journal of the Nigerian Society for Experimental Biology, 24(3), 108-115.
Akbulut, M., & Cakir, S. (2010). The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiology and Biochemistry, 48(2-3), 160-166.
Anjum, N. A., Umar, S., & Chan, M. T. (2010). Ascorbate-glutathione pathway and stress tolerance in plants. Springer Dordrecht Heidelberg, 265-291. https://doi.org/10.1007/978-90-481-9404-9.
Assefa, Y., Roozeboom, K., & Stamm, M. (2014). Winter canola yield and survival as a function of environment, genetics, and management. Crop Science, 54(5), 2303-2313 https://doi.org/10.2135/CROPSCI2013.10.0678.
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. Bates, L. S., Waldren, R. P., & Teare, L. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
Bazl, S., Karimi, R., Ershadi, A., Shahbodaghlo, A., & Rasouli, M. (2015). Effect of foliar application of methyl jasmonate in cold tolerance improvement of greenhouse-grown cucumber cv. ‘Negin’ seedlings. Journal of Crops Improvement (Journal of Agriculture), 17(2), 441-455. (In Persian).
Beladel, B., Nedjimi, B., Mansouri, A., Tahtat, D., Belamri, M., Tchanchane, A., Khelfaoui, F., & Benamar, M. E. A. (2013). Selenium content in wheat and estimation of the Selenium daily intake in different regions of Algeria. Journal Applied Radiation and Isotopic, 71(1), 7-10. https://doi.org/10.1016/j.apradiso.2012.09.009.
Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S. P., Meacham, M. C., Norman K., Mowat, H., Scott P., Stroud, J. L., Tovey, M., Tucker, M., White, P. J., Young, S. D., & Zhao, F.  J. (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant and Soil, 332(1), 5-18.
Bybordi, A. (2016). Effect of zeolite and solubility of selenium, silicon on yield, yield components and some physiological properties of canola under stress conditions. Iranian Journal of Field Crops Research, 14(1), 169-170. (In Persian).
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidase. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8.
Chang, C. J., & Koa, C. H. (1988). H2O2 metabolism during senescence of rice leaves changes in enzyme activities in light and darkness. Plant Growth Regulation, 25, 11-15.
Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A. H., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(2), 1937-1958. https://doi.org/10.1080/10643389.2019.1598240.
Chen, Y., Jia, X., Sun, F., Jiang, S., Liu, H., Liu, Q., & Kong, B. (2020). Using a stable pre-emulsified canola oil system that includes porcine plasma protein hydrolysates and oxidized tannic acid to partially replace pork fat in frankfurters. Meat Science, 160, 107968. https://doi.org/10.1016/j.meatsci.2019.107968.
Chu, J., Yao, X., & Zhang, Z. (2010). Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological trace element research, 136, 355-363. https://doi.org/10.1007/s12011-009-8542 
Dehghani Bidgoli, R. (2019). Effect of selenium nanoparticles (Se NPs), in the germination and some morphophysiological characteristics of (Astragalus gossypinus Fisher) in MS culture medium. Iranian Journal of Rangeland and Desert Research, 26(4), 1068-1055. (In Persian)
Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high-temperature stress by enhancing its antioxidant defense system. Plant Physiology and Biochemistry, 48(12), 999-1007. https://doi.org/10.1016/j.plaphy.2010.09.009.
Elemike, E., Euzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9(3), 1-32. https://doi.org/10.3390/app9030499.
Feng, R., Wei, C., & Tu, M. S. (2013). The roles of selenium in protecting plants against abiotic stresses.Environmental and Experimental Botany, 87, 58-68.
Filek, M., Gzyl-Malcher, B., Zembala, M., Bednarska, E., Laggner, P., & Kriechbaum, M. (2010). Effect of selenium on characteristics of rape chloroplasts modified by cadmium. Plant Physiology, 167(1), 28-33. https://doi.org/ 10.1016/j.jplph.2009.07.003.
Germ, M., Kreft, I., Stibilj, V., & Urbanc-Berčič, O. (2007). Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiology and Biochemistry, 45(2), 162-167. https://doi.org/10.1016/j.plaphy.2007.01.009.
Ghasemi, Y., Ghasemi, K., Pirdashti, H., & Asgharzadeh, R. (2016). Effect of selenium enrichment on the growth, photosynthesis and mineral nutrition of broccoli. Notulae Scientia Biologicae, 8(2), 199-203. https://doi.org/10.15835/nsb.8.2.9804.
Ghassemi-Golezani, K., Khomari, S., Valizadeh, M., & Alyari, H. (2008). Effects of seed vigor and the duration of cold acclimation on freezing tolerance of winter oilseed rape. Seed Science and Technology, 36(3), 767-775. https://doi.org/ 10.15258/sst.2008.36.3.26.
Goharian, A., Shirani Rad, A., moaveni, P., Mozafari, H., & Sani, B. (2020). Foliar Application of Selenium and Zn to Improve the Yield and Yield Components of Rapeseed Genotypes under Conventional and Delayed Sowing Dates. Journal of Agricultural Science and Sustainable Production, 30(2), 157-176. (In Persian).
Hasani, Z., Pirdashti, H., Yaghoubian, Y., & Zaman Nouri, M. (2014). Application of chlorophyll fluorescence technique to evaluate the tolerance of rice (Oryza sativa L.) genotypes to cold temperature and water. Journal of Cell and Tissue (JCT), 5(2), 195-206. (In Persian).
Hawrylak-Nowak, B. (2015). Selenite is more efficient than selenate in the alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica, 57(2), 49-54. https://doi.org/10.1515/abcsb-2015-0023.
Hawrylak-Nowak, B., Matraszek, R., & Szymańska, M. (2010). Selenium modifies the effect of short-term chilling stress on cucumber plants. Biological trace element research, 138(1), 307-315. https://doi.org/10.1007/s12011-010-8613-5.
Holaday, A. S., Ritchie, S. W., & Nguyen, H. T. (1992). Effects of water deficit on gas-exchange parameters and ribulose 1,5-bisphosphate carboxylase activation in wheat. Environmental and experimental botany, 32(4), 403-410. https://doi.org/10.1016/0098-8472(92)90053-5.
Jalilian, M., Dehdari, M., Amiri Fahliani, R., & Movahedi Dehnovi, M. (2017). Study of cold tolerance of different sugar beet (Beta vulgaris L.) cultivars at seedling growth stage. Environmental Stresses in Crop Sciences, 10(3), 475-490. (In Persian).
Janmohammadi, M., Tavakol Afshari, R., Mahfouzi, S., Alizadeh, H., Kamel, M., & Khiavi. M. (2010). Relationship among phenological development, physiological indices and freezing tolerance in winter wheat and rye under field conditions in moderate and cold regions. Electronic Journal of Crop Production, 3(2), 115-137. (In Persian).
Karami, S., Maali-Amiri, R., Vafaee, H., Naziri, Y. (2017). Evaluation of some defense enzyme activities in chickpea plants under cold stress. Agricultural Biotechnology Journal, 8(4), 85-98. (In Persian).
Kazemi-Shahandashti, S. S., & Maali-Amiri, R. (2018). Global insights of protein responses to cold stress in plants: Signaling, defense, and degradation. Journal of Plant Physiology, 226, 123-135. https://doi.org/10.1016/j.jplph.2018.03.022.
Khademi astaneh, R., Tabatabaie, S. J., & Bolandnazar, S. A. (2017). Effect of Se on yield and vegetative characteristics of Brussels sprouts in hydroponics.  Journal of Horticultural Science, 31(1), 167-179. (In Persian).
Khalili Mahaleh, J., & Roshdi, M. (2008). Effect of foliar application of micronutrients on quantitative and qualitative characteristics of 704 silage corn in Khoy. Seed and Plant, 24(2), 281-293. (In Persian).
Khavarinezhad, R. A., Goshehgir, Z., & Saadatmand, S. (2010). The effects of Selenium-Molybdenum interaction on contents of photosynthetic pigments in tomato (Lycopersicom esculentum Mill.) Journal of Plant Environmental Physiology, 5(1), 14-23. (In Persian).
Labanowska, M., Filek, M., Kościelniak, J., Kurdziel, M., Kulis, E., & Hartikainen, H. (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. Journal of Plant Physiology, 169(3), 275-284. https://doi.org/10.1016/j.jplph.2011.10.012.
Lapaz, A. D. M., Santos, L. F. D. M., Yoshida, C. H. P.,  Heinrichs, R., Campos, M., & Reis, A. R. D. (2019). Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia, 78(4), 498-508. https://doi.org/10.1590/1678-4499.20190114.
Lei, Y. A. N., Shah, T., Cheng, Y., Yan, L. U., Zhang, X. K., & Zou, X. L. (2019). Physiological and molecular responses to cold stress in rapeseed (Brassica napus L.). Journal of Integrative Agriculture, 18(12), 2742-2752. https://doi.org/10.1016/S2095-3119(18)62147-1.
Luo, H., Du, B., He, L., Zheng, A., Pan, S., & Tang, X. (2019). Foliar application of sodium selenate induces regulation in yield formation, grain quality characters and 2-acetyl-1-pyrroline biosynthesis in fragrant rice. BMC Plant Biology, 19(1), 1-12. https://doi.org/10.1186/s12870-019-2104-4.
Leuendorf, J. E., Frank, M., & Schmülling, T. (2020). Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Scientific reports, 10(1), 1-11. https://doi.org/10.1038/s41598-019-56797-x.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148(11), 350-382. https://doi.org/10.1016/0076-6879(87)48036-1.
Lu, N., Wu, L., & Shi, M. (2020). Selenium enhances the vase life of Lilium longiflorum cut flower by regulating postharvest physiological characteristics. Scientia Horticulturae, 264, 1-4. https://doi.org/10.1016/j.scienta.2019.109172.
Madebo, M. P., Luo, S. M., Wang, L., Zheng, Y. H., & Jin, P. (2021). Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. Journal of Integrative Agriculture, 20(11), 3060-3074. https://doi.org/10.1016/s2095-3119(20)63485.
Monirifar, H., & Sadegzadeh, M. B. (2014). Evaluation of cold tolerance in some alfalfa (Medicago sativa L.) ecotypes under field conditions. Environmental Stresses in Crop Sciences, 7(1), 93-103. (In Persian).
Nabati, J., Nezami, A., Hasanfard, A. R., & Haghighat Sheshvan, Zh. (2018). The trend of changes in chlorophyll fluorescence parameters in two Vicia faba ecotypes during freezing stresses. Iranian Journal Pulses Research, 9(2), 139-150. (In Persian).
Nazerieh, H., Ardebili, Z. O., & Iranbakhsh, A. (2018). Potential benefits and toxicity of nano selenium and nitric oxide in peppermint. Acta agriculturae Slovenica, 111(2), 357-368.
Nawaz, F., Naeem, M., Ashraf, M. Y., Tahir, M. N., Zulfiqar, B., Salahuddin, M., Shabbir, R. N., & Aslam, M. (2016). Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Frontiers in Plant Science, 7, 1438.
Paeizi, M., & Shariati, M. (2012). Effect of cold stress on PSII efficiency of Dunaliella using chlorophyll fluorescence kinetics. Journal of Cell and Tissue, 2(4), 395-405. (In Persian).
Pasan Eslam, B. (2013). Effects of planting dates on yield and yield components of fall rape oilseed cultivars. Iranian Journal of Field Crop Science, 44(1), 1-8. (In Persian).
Rady, M., Semida, W. M., El-Mageed, T. A. A., Howladar, S. M., & Shaaban, A. (2020). Foliage applied selenium improves photosynthetic efficiency, antioxidant potential and wheat productivity under drought stress. International Journal of Agriculture and Biology, 24, 1293-1300. https://doi.org/10.17957/IJAB/15.1562
Rezaie, R., Mandoulakani, B. A., & Fattahi, M. (2020.). Cold stress changes the antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports, 10(1), 1-10.
Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant Populas gelrica. Plant Physiology, 57, 308-309. https://doi.org/10.1104/pp.57.2.308.
Sajedi, N., & Madani, H. (2017). Improvement of some physiological traits, yield and yield ‎components of wheat and barley by using sodium selenate and ‎sodium selenite in dryland conditions. Journal of Crop Ecophysiology, 41(1), 17-30. (In Persian).
Sasani, S., Tavakkol Afshari, R., & Mahfoozi, S. (2013). Low-temperature acclimation and the correlation of vernalization requirement with accumulation of some compatible solutes and physiological mechanisms in bread wheat. Iranian Journal of Field Crop Science, 44(2), 327-345. (In Persian).
Shalaby, T. A., Abd-Alkarim, E., El-Aidy, F., Hamed, E.S., Sharaf-Eldin, M., El-Ramady, H., Bayoumi, Y., & Reis, A. R. (2021). Nano-selenium, silicon and H2O2 boost the growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212, 1-9.
Shiri, M., & Choukan, R. (2017). Evaluation of Maize Hybrids Tolerance to Drought Stress. Journal of Crop Breeding, 9(21), 89-99. (In Persian).
Sun, H. W., Ha, J., Liang, J. H. S., & Kang, W. (2010). Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis, 41(10), 1195-1204. https://doi.org/10.1080/00103621003721395.
Swoczyna, T., Mojski, J., Baczewska-Dabrowska, A. H., Kalaji, H. M., & Elsheery, N. I. (2020). Can we predict winter survival in plants using chlorophyll fluorescence? Photosynthetica, 58(2), 433-442. https://doi.org/10.32615/ps.2019.181.
Takahashi, D., Kawamura, Y., & Uemura, M. (2013). Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. Journal of proteome research, 12(11), 4998-5011.
Thavarajah, D., Thavarajah, P., Vial, E., Gebhardt, M., Lacher, C., Kumar, S., & Combs. G.F. (2015). Will selenium increase lentil (Lens culinaris Medik) yield and seed quality? Frontiers in Plant Science, 6, 356-364. https://doi.org/10.3389/fpls.2015.00356.
Wu, Y., Wei, W., Pang, X., Wang, X., Zhang, H., Dong, B., Xing, Y., & Li, X. (2014). Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics, 15(1), 1-16.
Xia, J., Li, Y., & Zou, D. (2004). Effects of salinity stress on PSII in Ulva lactucaas probed by chlorophyll fluorescence measurements. Aquatic Botany, 80(2), 129-137.
Zhao, Y., Han, Q., Ding, C., Huang, Y., Liao, J., Chen, T., Feng, S., Zhou, L., Zhang, Z., Chen, Y., Yuan, S., & Yung, M. (2020). Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. International journal of molecular sciences, 21(4), 1390-1413. https://doi.org/10.3390/ijms21041390.