نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران، رایانامه: arefeh.mazrouei@stu.sku.ac.ir

2 نویسنده مسئول، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران، رایانامه: saeidi@sku.ac.ir

3 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران، رایانامه: z.izadi@sku.ac.ir

4 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران، رایانامه: mohammadkhani@sku.ac.ir

چکیده

ازآنجایی‌که محصولات باغبانی برداشت‌شده قابلیت فساد­پذیری بالایی دارند، به‌کارگیری فنون مناسب جهت افزایش ماندگاری به‌منظور استفاده در تمام فصول سال و هم‌چنین صادرات ضروری است. پژوهش حاضر در سال 1400-1399 با هدف بررسی اثرات درون­پاشی اسانس مرزه بختیاری با کیتوزان بر خصوصیات حسی و کیفی دانه انار در قالب طرح کاملاً تصادفی با هشت تیمار شامل نسبت‌های وزنی- وزنی اسانس به کیتوزان (1:1، 1:2 و 1:3) در دو سطح پاشش اسانس مرزه بختیاری (3/0 و 6/0) به‌همراه دو شاهد قبل و بعد از اعمال تیمارها با سه تکرار در آزمایشگاه تحقیقاتی دانشگاه شهرکرد انجام شد. نتایج نشان داد که بهترین وضعیت ظاهری دانه­های انار در نسبت 6/0-1 کیتوزان به اسانس و بهترین مزه دانه­های انار در تیمارهای 3/0-2 و 3/0-3 مشاهده شد. در تیمار اسانس قطر هاله ضد میکروبی مربوط به قارچ 2 میلی­متر و در نسبت 1:2 اسانس به کیتوزان 5/5 میلی­متر نشان داده شد. بیش‌ترین بازده درون­پوشانی و کوچک­ترین اندازه ذره مربوط به نسبت 1:2 بود. میزان بازده در نسبت‌های 1:3 (1/55 درصد) و نسبت 1:1 (2/51 درصد) نشان داده شد. کم‌ترین پتانسیل زتا در نسبت 1:3 و بیش‌ترین میزان در نسبت 1:1 حاصل شد. پوشش­دهی دانه­های انار و انتخاب غلظت مناسب اسانس مرزه بختیاری همراه با پوشش کیتوزان (3/0-1 و 3/0-2)، می­توان زمان ماندگاری، بازارپسندی و کیفیت تغذیه­ای دانه انار را به میزان مناسب و قابل توجهی حفظ کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Study on Sensory Characteristics of Pomegranate Arils (Punica granatum L.) Affected by Encapsulation of Satureja bakhtiyarica Essential Oil with Chitosan

نویسندگان [English]

  • arefeh mazrouei 1
  • keramatollah saeidi 2
  • zahara izadi 3
  • Abdolrahman Mohammadkhani 4

1 Department of Horticultural Sciences, Shahrekord University, Shahrekord, Iran. E-mail: arefeh.mazrouei@stu.sku.ac.ir

2 Corresponding Author, Department of Horticultural Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: saeidi@sku.ac.ir

3 3. of Biosystems, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: Z.izadi@sku.ac.ir

4 Department of Horticultural Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail: mohammadkhani@sku.ac.ir

چکیده [English]

Since harvested horticultural products are highly perishable, those techniques should be used to increase their shelf life for their use in all seasons and their export. The effects of the encapsulation of Satureja bachtiarica essential oil with chitosan on the sensory and qualitative characteristics of pomegranate arils are studied in an experiment based on a completely randomized design with eight treatments including different w/w ratios of S. bachtiarica essential oil to chitosan (1:1, 1:2, and 1:3) at two spray levels of S. bachtiarica essential oil (0.3 and 0.6), and a pre-treatment and a post-treatment control, with three replications in the research laboratory of Shahrekord University in 2020-2021. Arils treated with the chitosan: essential oil ratio of 1-0.6 exhibit the best appearance and those treated with 2-0.3 and 3-0.3 exhibit the best taste. Based on the results, the diameter of the antimicrobial halo related to the fungus has been 2 mm in the essential oil treatment and 5.5 mm in the essential oil: chitosan ratio of 1:2. The highest encapsulation efficiency and the smallest particle size pertain to the treatment of 1:2. The ratio of 1:3 show higher efficiency than the ratio of 1:1 (55.1% versus 51.2%). The lowest zeta potential is obtained from the 1:3 ratio and the highest from the 1:1 ratio. Coating pomegranate arils and selecting an appropriate concentration of S. bachtiarica with chitosan coating (1-0.3 and 2-0.3) can significantly contribute to preserving the shelf life, marketability, and nutritional quality of pomegranate arils.

کلیدواژه‌ها [English]

  • Appearance
  • Nano emulsion
  • Particle size
  • Texture
  • Zeta potential
احمدی، کریم؛ عبادزاده، حمیدرضا؛ حاتمی، فرشاد؛ حسین پور، ربابه و عبدشاه، هلدا (1399). آمارنامه کشاورزی سال 1399: محصولات باغی. تهران: مرکز فناوری اطلاعات و ارتباطات وزارت جهاد کشاورزی.
حسن­زاده اوچتپه، حامد؛ علیزاده خالد آباد، محمد و رضازاده باری، محمود (1397). نانو درون­پوشانی عصاره سیر به روش امولسیون آب در روغن: ویژگی­های فیزیکوشیمیایی و ضدمیکروبی. علوم و صنایع غذایی، 15(84)، 337-347.
خوش اخلاق، خدیجه؛ محبی، محبت و کوچکی، آرش (1399). بررسی ویژگی­های ساختاری و رهایش د­-لیمونن نانوپوشانی شده با صمغ دانه قدومه شیرازی به روش الکترواسپری. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، 9(1)، 11- 26.
راد، مهیار؛ غفوری، حامد و غلامی، زهره (1399). تأثیر پوشش خوراکی حاوی کربوکسی متیل سلولز و متابی سولفیت سدیم بر ماندگاری قارچ دکمه­ای. نشریه پژوهش­های علوم و صنایع غذایی ایران، 16(5)، 581-605.
عزیزی، فاطمه؛ عرفانی مقدم، جواد؛ خادمی، اورنگ و نورالهی، خشنود (1396). تأثیر آسکوربیک‌اسید و اسید اگزالیک بر ماندگاری آریل­های انار. علوم و صنایع غذایی، 14(71)، 15-24.
قره­ نقده، ساسان؛ فرقانی، سمیرا؛ قره ­نقده، سامان و صوتی خیابانی، محمود (1396). بررسی خاصیت ضدمیکروبی عصاره متانولی، اسانس و نانولیپوزوم حاوی اسانس نعناع فلفلی. علوم و صنایع غذایی، 14(68)، 93-102.
References
Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189 199. https://doi.org/10.1016/j.foodhyd.2011.12.003.
Ahmadi, K., Ebadzadeh, H., Hatami, F., Hosseinpor, R., & Abdshah, H. (2020). Agricultural Statistics of 1398: Horticultural Products. Tehran: Information and Communication Technology Center of the Ministry of Agricultural Jihad. (In Persian).
Ajun, W., Yan, S., Li, G., & Huili, L. (2009). Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydrate Polymers, 75(4), 566-74. https://doi.org/10.1016/j.carbpol.2008.08.019.
Anis, A., Pal, K., & Al-Zahrani, S. M. (2021). Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers, 13(4), 575. https://doi.org/10.3390/polym13040575.
Asgary, S., Keshvari, M., Sahebkar, A., & Sarrafzadegan, N. (2017). Pomegranate consumption and blood pressure: a review. Current Pharmaceutical Design, 23(7), 1042-1050. https://doi.org/10.2174/1381612822666161010103339.
Azizi, F., Erfani Moghadam, J., Khademi, O., & Nourollahi, Kh. (2017). Effects of oxalic acid and ascorbic acid on shelf life of pomegranate arils. Journal of Food Science and Technology, 71(71), 15-24. https://www.sid.ir/en/journal/ViewPaper.aspx?id=537543. (In Persian).
Candir, E., Ozdemir, A. E., & Aksoy, M. C. (2018). Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. ‘Hicaznar’. Scientia Horticulturae, 235, 235–243. https://doi.org/10.1016/j.scienta.2018.03.017.
Feyzioglu, G. C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Science and Technology, 70, 104–110. https://doi.org/10.1016/j.lwt.2016.02.037.
García-Pastor, M. E., Serrano, M., Guillén, F., Zapata, P. J., & Valero, D. (2020). Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharvest Biology and Technology, 167, 111226. https://doi.org/10.1016/j.postharvbio.2020.111226.
Gharenaghadeh, S., Forghani, S., Gharehnaghadeh, S., & Sowti, M. (2017). Evaluation of antimicrobial properties of methanolic extract, essential oil and nanolipozom of Mentha piperita. Journal of Food Science and Technology, 14 (68), 93-102. https://www.sid.ir/en/journal/ViewPaper.aspx?id=537506. (In Persian).
Hamedi, H., Kargozari, M., Shotorbani, P., Babolani Moghadam, N., & Fahimdanesh, M. (2017). A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: The antioxidant and antimicrobial activity, and application in food model. Food Hydrocolloids, 72, 35-46. https://doi.org/10.1016/j.foodhyd.2017.05.014.
Hassanzadeh, H., Alizadeh, M., & Rezazad, B. M. (2019). Nano-encapsulation of garlic extract by water-in-oil emulsion: physicochemical and antimicrobial characteristics. Journal of Food Science and Technology, 15(84), 337-347. http://fsct.modares.ac.ir/article-7-16487-en.html. (In Persian).
Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. https://doi.org/10.1016/j.carbpol.2013.02.031.
Hussein, Z., Fawole, O. A., & Obia Opara, U. (2020). Effects of bruising and storage duration on physiological response and quality attributes of pomegranate fruit. Scientia Horticulturae, 267, 109306. https://doi.org/10.1016/j.scienta.2020.109306.
Kamali, A., Sharayei, P., Niazmand, R., & Eynafshar, S. (2012). Effect of different concentration of maltodextrin and polyvinylpyrrolidone on stability of saffron’s effective compounds microencapsulated by spray drying. Journal of Research an Innovation in Food Science and Technology, 1(4), 241-254.  https://doi.org/10.22101/JRIFST.2013.03.15.142.
Karimirad, R., Behnamian, M., & Dezhsetan, S. (2019). Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT-Food Science and Technology, 106, 218-228, https://doi.org/10.1016/j.lwt.2019.02.062.
Khatibi, S. A., Misaghi, A., Moosavy, M. H., Akhondzadeh Basti, A., Koohi, M. K., Khosravi, P., & Haghirosadat F. (2016). Encapsulation of Zataria Multiflora Bioss. Essential oil into nanoliposomes and in vitro antibacterial activity against Escherishia coli O157:H7. Journal of Food Processing and Preservation, 41, 1-10, https://doi.org/10.1111/jfpp.12955.
Khoshakhlagh, Kh., Mohebbi, M., & Koocheki, A. (2020). The evaluation of structural properties and release behavior of d-limonene nanoencapsulated with Alyssum homolocarpum seed gum applying electrospraying. Journal of Research and Innovation in Food Science and Technology, 9(1), 11-26. https://www.sid.ir/en/journal/ViewPaper.aspx?id=749375. (In Persian).
Lopez-Reyes, J. G., Spadaro, D., Gullinoa, M., & Garibaldia, A. (2010). Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour and Fragrance Journal, 25(3), 171-177. https://doi.org/10.1002/ffj.1989.
Martinez-Abad, A., Sanchez, G., Fuster, V., Lagaron, J. M., & Ocio, M. J. (2013). Antimicrobila performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control, 34(1), 214-220. https://doi.org/10.1016/j.foodcont.2013.04.025.
Meighani, H., Ghasemnezhad, M., & Bakhshi, D. (2015). Effect of different coatings on postharvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits. Journal of Food Science and Technology, 52(7), 4507-4514. https://doi.org/10.1007/s13197-014-1484-6.
Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science and Emerging Technologies, 28, 73-80. https://doi.org/10.1016/j.ifset.2014.12.011.
Mounyr, B., Moulay, S., & SaadKoraich, I. (2016). Methods for in vitro evaluating antimicrobial activity: A review.  Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005.
Munoz, Z., & Moret, A. (2010). Sensitivity of Botrytis cinerea to chitosan and acibenzolar‐S‐methyl. Pest Management Science, 66(9), 974-979. https://doi.org/10.1002/ps.1969.
O’Grady, L., Sigge, G., Caleb, O. J., & Opara, U. L. (2014). Bioactive compounds and quality attributes of pomegranate arils (Punica granatum L.) processed after long-term storage. Food Packaging and Shelf Life, 2(1), 30-37. https://doi.org/10.1016/j.fpsl.2014.06.001.
Ortan, A., Campeanu, G., Dinu Pirv, C., & Popesco L. (2009). Studies concerning the entrapment of Anethum graveolens essential oil in liposomes. Romanian Biotechnological Letters, 14, 4411-4417.
Pareek, S., Valero, D., & Serrano, M. (2015). Postharvest biology and technology of pomegranate. Journal of the Science of Food and Agriculture, 95(12), 2360-2379. https://doi.org/10.1002/jsfa.7069.
Perrico, M., Arace, E., Corbe, M. R., Sinigagila, M., & Bevilacqua, A. (2015). Bioactivity of essential oils. A review on their interaction with food components. Frontiers in Microbiology, 9(6), 76. https://doi.org/10.3389/fmicb.2015.00076.
Qu, T., Li, B., Huang, X., Li, X., Ding, Y., Chen, J., & Tang, X. (2020). Effect of peppermint oil on the storage quality of white button mushrooms (Agaricus bisporus). Food and Bioprocess Technology, 13, 404-418. https://doi.org/10.1007/s11947-019-02385-w.
Rad, M., Ghafori, H., & Gholami, Z. (2021). Effect of edible coating containing carboxymethyl cellulose and sodium metabisulfite on the shelf life of the button mushroom. Iranian Food Science and Technology Research Journal, 5(65), 581-605. https://doi.org/10.22067/IFSTRJ.V16I5.83614. (In Persian).
Radünz, M., Luiza Martins da Trindade, M., Mota Camargo, T., Luiz Radünz, A., Dellinghausen Borges, C., Avila Gandra, E., & Helbig, E. (2018). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum L.) essential oil. Food Chemistry, 276, 180-186. https://doi.org/10.1016/j.foodchem.2018.09.173.
Razavizadeh, B. B. M., Khan Mohammadi, F., & Azizi, S. N. (2014). Comparative study on properties of rice bran oil microcapsules prepared by spray drying and freeze drying. Journal of Research and Innovation in Food Science and Technology, 3(2), 97-114. https://doi.org/10.22101/JRIFST.2014.08.23.321.
Santos, M., Martins, S., Veríssimo, C., Nunes, M., Lima, A., Ferreira, R., Pedroso, L., Sousa, I., & Ferreira, M. (2017).  Essential oils as antibacterial agents against food-borne pathogens: Are they really as useful as they are claimed to be? Journal of Food Science and Technology, 54(13), 4344-4352. https://doi.org/10.1007/s13197-017-2905-0.
Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52-62. https://doi.org/10.1016/j.foodchem.2015.01.067.
Sepahvand, M., Zahedi, B., & Ehteshamnia, A. (2017). Evaluation of pomegranate (Punica granatum L.) genotypes in Lorestan province by morphological and biochemical characteristics. Iranian Journal of Horticultural Science, 48(3), 447-458.
Serrano-León, J. S., Bergamaschi, K. B., Yoshida, C. M. P., Saldaña, E., Selani, M. M., Rios-Mera, J. D., & Contreras- Castillo, C. J. (2018). Chitosan active films containing 720 agro-industrial residue extracts for shelf life extension of chicken restructured 721 product. Food Research International, 108, 93-100. https://doi.org/10.1016/j.foodres.2018.03.031.
Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116-124. https://doi.org/10.1016/j.ijbiomac.2012.08.026.
Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119, 41-48. https://doi.org/10.1016/j.postharvbio.2016.04.015.
Sotelo-Boyás, M. E., Correa-Pacheco, Z. N., Bautista-Baños, S., & Corona-Rangel, M. L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT-Food Science and Technology, 77, 15-20. https://doi.org/10.1016/j.lwt.2016.11.022.
Taheri, M., Heidari, M., & Zarei, M. (2019). Effects of aloe vera gel and storage duration on some biochemical indices in minimally processed pomegranate fresh arils. Plant Productions, 42(4), 495-508. https://doi.org/10.22055/ppd.2019.25498.1591.
Varasteh, F., Arzani, K., Barzegar, M., & Zamani, Z. (2017). Pomegranate (Punica granatum L.) fruit storability improvement using pre-storage chitosan coating technique. Journal of Agricultural Science and Technology, 19(2), 389-400.
Wang, H., Chen, Y., Sun, J., Li, Y., Lin, Y., Lin, M., Huang, Y., Ritenour, M. A., & Lin, H. (2018). The changes in metabolisms of membrane lipids and phenolics induced by Phomopsis longanae Chi infection in association with pericarp browning and disease occurrence of postharvest longan fruit. Journal of Agricultural and Food Chemistry, 66(48), 12794–12804. https://doi.org/10.1021/acs.jafc.8b04616.
Wang, L., Wu, H., Qin, G., & Meng, X. (2014). Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control, 41(1), 56-62. https://doi.org/10.1016/j.foodcont.2013.12.028.
Xing, Y., Lin, H., Cao, D., Xu, Q., Han, W., Wang, R., & Li, X. (2015). Effect of chitosan coating with cinnamon oil on the quality and physiological attributes of china jujube fruits. BioMed Research International, 2015(2), 1-10. https://doi.org/10.1155/2015/835151.
Yazgan, H. (2020). Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT-Food Science and Technology, 130, 109669, https://doi.org/10.1016/j.lwt.2020.109669.
Zanetti, M., Carniel, T. K., DalcaCnton, F., Dos Anjos, R. S., Gracher Riella, H., De Araújo, P. H. H., De Oliveira, D., & Antônio Fiori, M. (2018). Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends in Food Science and Technology, 81, 51-60, https://doi.org/10.1016/j.tifs.2018.09.003.