Abdel Latef, A. A., & Chaoxing, H. (2014). Does the inoculation with Glomus mosseae improves salt tolerance in pepper plants?. Journal of Plant Growth Regulation, 33, 644-653.
Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., & Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357(1), 117-129.
Aliyar, S., Aliasgharzad, N., Dabbagh Mohammadi Nasab, A., & Oustan, S. (2021). The effect of vermicompost application on growth and water relationships of quinoa plant under salinity stress conditions, Agricultural Science and Sustainable Production, 31(3), 131-147. (In Persian)
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, (1), 1-15.
Basra, M. A. S, Iqbal, S., & Afzal. I. (2014). Evaluating the response of nitrogen application on growth development and yield of quinoa genotypes. International Journal of Agriculture and Biology, 16(5), 886-892.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Beltrano, J., & Ronco, M. G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20(1), 29-37.
Biondi, S., Ruiz Karina, B., Martinez Enrique, A., Zurita-Silva, A., Orsini, F., Antognoni, F., Dinelli G., Marotti, I., Gianquinto, G., Maldonado, S., Burrieza, H., Bazile, D., Adolf, V. I., & Jacobsen, S. E. (2015). In State of the Art Report on Quinoa around the World 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO: Santiago, Chile; CIRAD: Montpellier, France, 1, 143-156.
Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem, 72, 248-254.
Cai, Z. Q., & Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC plant biology, 20(1), 1-15.
Chance, B., & Maehly, A. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
Chaum, S., & Kirdmanee, C. (2010). Salt tolerance screening in six maize (Zea mays L.) genotypes using multivariate cluster analysis. Philippine Agricultural Scientis, 93, 156-164.
Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline accumulation in plants: roles in stress tolerance and plant development. In Osmolytes and plants acclimation to changing environment: emerging omics technologies, 155-166.
Glenn, E. P., Nelson, S. G., Ambrose, B., Martinez, R., Soliz, D., Pabendinskas, V., & Hultine, K. (2012). Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environmental and Experimental Botany, 83, 62-72.
Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X., Liu, Q., Xia, X., Li H., & Zhao, L. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC plant biology, 15(1), 1-13.
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 1-18.
Hameed, A., Bibi, N., Akhter, J., & Iqbal, N. (2011). Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49(2), 178-185.
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193.
Heidari, F., Jalilian, J., & gholinezhad, E. (2020). The role of foliar application nano-fertilizers in modulating the negative effects of salt stress in quinoa. Journal of Crops Improvement, 22(4), 587-600. (In Persian)
Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.
Jamali, S., & Sharifan, H. (2018). Investigation the effect of different salinity levels on yield and yield components of quinoa (Cv. Titicaca). Journal of Soil and Water Conservation, 25(2), 251-266. (In Persian)
Khan, M., & Panda, S. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum, 30, 81-89.
Koyro, H. W., & Eisa, S. S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302(1), 79-90.
Lazcano-Ferrat, I., & Lovatt, C.J. (1999). Relationship between relative water content, nitrogen pools and growth of Phaseolus vulgaris L. and P. acutifolius, A. gray during water deficit. Crop Science, 39, 467-475.
Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398.
Manivannan, P., Jaleel, C.A., Chang-Xing, Z., Somasundaram, R., Azooz, M.M., & Panneerselvam, R. (2008). Variations in growth and pigment composition of sunflower varieties under early season drought stress. Global Journal of Molecular Sciences, 3(2), 50-56.
Mansouri, A., & Omidi, H. (2021). Effect of priming with chitosan nanoparticles and potassium nitrate on the biochemical content of quinoa seedlings Giza cultivar under salinity tension conditions, Scientific Journal of Crop Physiology, 13(50), 85-102. (In Persian)
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Carrasco, K. B. R., Martinez E. A., Alnayef, M., Marotti, I., Bosi, S., & Biondi, S. (2011). Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38(10), 818-831.
Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S., & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB plants, 6, 1-18.
Parvez, S., Abbas, G., Shahid, M., Amjad, M., Hussain, M., Asad, S. A., Imran, M., & Naeem, M. A. (2020). Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and environmental safety, 187, 1-11.
Prager, A., Munz, S., Nkebiwe, P., Mast, B., & Graeff-Hönninger, S. (2018). Yield and quality characteristics of different quinoa (Chenopodium quinoa willd.) cultivars grown under field conditions in southwestern Germany. Agronomy, 8(10), 1-19.
Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological chemistry, 212(1), 335-343.
Ruiz, K. B., Aloisi, I., Del Duca, S., Canelo, V., Torrigiani, P., Silva, H., & Biondi, S. (2016). Salares versus coastal ecotypes of quinoa: salinity responses in chilean landraces from contrasting habitats. Plant Physiology and Biochemistry, 101, 1-13.
Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., Molina-Montenegro, M. A., Biondi, S., & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5), 1037-1046.
Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R., & Panneerselvam, R. (2008). Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water-limited conditions. Colloids and Surfaces B: Biointerfaces, 62(1), 125-129.
Shabala, L., Mackay, A., Tian, Y., Jacobsen, S. E., Zhou, D., & Shabala, S. (2012). Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 146(1), 26-38.
Shabala, S., Hariadi, Y., & Jacobsen, S. E. (2013). Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 170(10), 906-914.
Sharifan, H., Jamali, S., & Sajadi, F. (2018). Investigation the effect of different salinity levels on the morphological parameters of quinoa (chenopodium quinoa willd.) under different irrigation regimes. Journal of Water and Soil Science, 22 (2), 15-27. (In Persian)
Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Yuan, Y. H. (2013). Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry, 63, 209-216.
Sun, Y., Lindberg, S., Shabala, L., Morgan, S., Shabala, S., & Jacobsen, S. E. (2017). A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environmental and Experimental Botany, 141, 154-160.
Tanveer, M., Shahzad, B., Sharma, A., Biju, S., & Bhardwaj, R. (2018). 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry, 130, 69-79. doi: 10.1016/j.plaphy.2018.06.035
Tapia, M. (2015). The long journey of quinoa: Who wrote its history? In State of the Art Report on Quinoa around the World 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO: Santiago, Chile; CIRAD: Montpellier, France, 1, 1-7.
Toderich, K. N., Mamadrahimov, A. A., Khaitov, B. B., Karimov, A. A., Soliev, A. A., Nanduri, K. R., & Shuyskaya, E. V. (2020). Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids, and squalene composition of new quinoa genotype, grown in hyper-arid desert environments. Frontiers in Plant Science, 11, 1-15.
Trovato, M., Mattioli, R., & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19(4), 325-346.
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539.