نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه: phd.aboodeh.hana@asnrukh.ac.ir

2 گروه تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه: amehdibakhshandeh@asnrukh.ac.ir

3 گروه تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه: Moraditelavat@asnrukh.ac.ir

4 گروه تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه: seyedatasiadat@asnrukh.ac.ir

5 گروه تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه: amirmoosavi@asnrukh.ac.ir

چکیده

به‌منظور شناسایی ژنوتیپ‌های متحمل و حساس کلزا به تنش خشکی در مراحل انتهایی گلدهی تا 50 درصد خورجین­دهی و خورجین­دهی تا برداشت در شرایط مزرعه­ای، آزمایش به‌صورت اسپلیت‌پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1400-1399 در مزرعه پژوهشی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان اجرا شد. فاکتورهای آزمایشی شامل سه سطح آبیاری (۱- شاهد (بدون قطع آبیاری)، ۲- قطع آبیاری در مرحله شروع گلدهی (کد فنولوژی 60) تا تشکیل 50 درصد خورجین (کد فنولوژی 75) و ۳- قطع آبیاری در مرحله تشکیل خورجین تا برداشت (کد فنولوژی 99)) در کرت‌های اصلی و فاکتور فرعی شامل 10 ژنوتیپ (لانگ­پاد، آرام، آرجی‌اس 003، جانکوم، سولار، هایولا 4815، مهتاب، جولیوس، آگامکس و سالا) بود. جهت گزینش مطلوب­تر ژنوتیپ‌های متحمل کلزا می­توان از شاخص‌های ذکرشده استفاده کرد. شاخص‌های MP (میانگین بهره­وری)، GMP (میانگین بهره­وری هندسی) و STI (شاخص تحمل تنش) مناسب­ترین شاخص‌های کمی تحمل به تنش خشکی در تیمارهای موردمطالعه بود. بیش‌ترین عملکرد دانه تیمار شاهد از ژنوتیپ هایولا 4815، لانگ­پاد و سولار به‌ترتیب (8/2093، 1791 و 1700 کیلوگرم در هکتار) و کم‌ترین از ژنوتیپ جانکوم (1/832 کیلوگرم در هکتار) و در تنش گلدهی تا 50 درصد خورجین­دهی بیش‌ترین عملکرد دانه ژنوتیپ هایولا 4815 (9/1563 کیلوگرم در هکتار) و لانگ­پاد (9/1150 کیلوگرم در هکتار) و کم‌ترین از ژنوتیپ جانکوم و مهتاب به‌ترتیب با عملکرد دانه (540، 5/935 کیلوگرم در هکتار) بود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Drought Tolerance and Susceptibility Indices of Rapeseed ‎Genotypes under Conditions of late Irrigation Interruption of Growing Season

نویسندگان [English]

  • hana aboodeh 1
  • abdelmehdi bakhshandeh 2
  • Mohammad Moradi Telavat 3
  • seyed ata Siadat 4
  • SeyedAmir Moosavi 5

1 Corresponding Author, Department of Plant Production and Genetics, College of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. E-mail: phd.aboodeh.hana@asnrukh.ac.ir

2 Department of Plant Production and Genetics, College of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. E-mail: amehdibakhshandeh@asnrukh.ac.ir

3 Department of Plant Production and Genetics, College of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. E-mail: Moraditelavat@asnrukh.ac.ir

4 Department of Plant Production and Genetics, College of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. E-mail: seyedatasiadat@asnrukh.ac.ir

5 Department of Plant Production and Genetics, College of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran. E-mail: amirmoosavi@asnrukh.ac.ir

چکیده [English]

In order to determine drought stress in the final stages of flowering up to 50% pods and pods until harvest tolerance in canola genotypes via yield-base stress tolerance indices, a split plot experiment has been conducted based on the randomized complete block design with three replications at the research farm of department of plant production and genetics, Agricultural Sciences and Natural Resources University of Khuzestan, Iran during 2020-2021. The main plots include three irrigation treatments: the control (without any interruption of irrigation), interruption of irrigation in the beginning of flowering stage (phenology code 60) to the formation of 50% pods (phenology code 75), and  interruption of irrigation in the stage of formation of pods until harvest (Phenology code 99) in the main plots. Also, the genotypes (Long pod, Aram, RGS 003, Jankom, Solar, Hayola 4815, Mahtab, Julius, Agamax, and Sala) are arranged in sub-plots with respect to irrigation treatments. They are reliable indices to identify drought tolerant rapeseed cultivars. Indices MP, GMP, and STI are the most suitable ones to evaluate drought stress tolerance in different treatments. The highest grain yield of control treatment belongs to Hayola 4815, Long pod, Solar genotypes (2093.8, 1791 and 1700 kg / ha), and the lowest to Jankum genotype (832.1 kg / ha), in flowering Stress up to 50% pods. The highest grain yield is observed in Hayola 4815 (1563.9 kg / ha) and Lon gpod (1150.9 kg / ha) and the lowest grain yield in Jankum and Mahtab genotype (540, 935.5 kg / ha).

کلیدواژه‌ها [English]

  • Average productivity
  • geometric mean productivity
  • grain yield
  • Rapeseed
  • yield Stability
Aboodeh, H., Moradi Telavat, M. R., Moshatati, A., & Mousavi, S. H. (2019). Evaluation of Spring Safflower Genotypes by using of Indices of Tolerance and Sensitivity to Terminal heat Stress. Environmental stress in Crop Scientiae, 12(2), 616-607.
Aliakbari, M., Razi, H., & Kazemeini, S. A. (2014). Evaluation of Drought Tolerance in Rapeseed (Brassica napus L.) Cultivars Using Drought Tolerance Indices. International Journal of Advanced Biological and Biomedical Research, 2, 696-705.
Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Scientiae, 24, 933-937.
Chaghakaboodi, Z., Kahrizi, D., & Zebarjadi, A. R. (2012). Aestimatio siccitatis tolerantiae rapacitatis (Brassica napus L.) genotypes in condicionibus laboratori, 38-17.
Chogan, R., Taherkhani, T., Ganadha, M. R., & Khodarahmi, M. (2006). Study siccitatis tolerantiae in lineis insitis frumenti spelta utens siccitatis tolerantiae indices. Journal of Crop Scientiae. Crop Science Society of Iran, 8(1), 89-79.
Farshadfar, E, Poursiahbidi, M. M., & Safavi, S. M. (2013). Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. International Journal of Advanced Biological and Biomedical Research, 1(2), 143-158.
Fernandez, G.C.J. (1992). Effective selection criteria for assessing plant stress tolerance. In: Kuo, C.C. (eds.), Proceeding of the International Symposium on Adaptation of Food Crops to Temperature and Water Stress. AVRDC. Shanhua. Taiwan.
Fischer, R.A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. Part 1: grain yield response. Aust. J. Agr. Res. Journal agricultural Agricultural, 29, 897-912.
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77, 523-531.
Goel, P., M. Bhuria, R. Sinha, T.R. Sharma, & Singh, A. K. (2019). Promising transcription factors for salt and drough    tolerance in plants. In molecular approaches in plant biology and environmental challenges (pp. 7-50). Springer, Singapore. Blum, Abraham. Plant breeding for stress environments. CRC press, 2018.
Jafarzadeh Ghahdrijani, M., Majidi, M. M., Mirlohi, A. F., & Ebrahimiyan, M. (2015). Response to direct and indirect selection of grain yield, oil and yield components in canola varieties under normal and soil moisture stress. Journal of Plant Production, 37(3), 129 -141.
Jahangiri, S., & Kahrizi, D. (2015). Study of genetic variation and drought tolerance in commercial rapeseed (Brassica napus L.) cultivars. Journal of Genetic Resources, 1(2), 73-82.
 Kamrani, M., Farzi, A., & Ebadi, A. (2015). Evaluation of grain yield performance and tolerance to drought stress in wheat genotypes using drought tolerance indices. Cereal Research, 5(3), 231-246. (In Persian with English Abstract).
Khalili, M., Pour-Aboghadareh, A. R., & Naghavi, M. R. (2016). Assessment of drought tolerance in barley: integrated selection criterion and drought tolerance indices. Environmental and Experimental Biology, 14(1), 33-41.
Mokari, M., Abedinpour, M., & Dehghan, H. (2020). Effect of Drought Stress and Planting Date on Grain Yield and Water Use Efficiency of Autumn Wheat in Kashmar Region. Journal of Water Research in Agriculture, 34(2), 168-186.
Moradi Telavat, M. R., & Siadat, S. A. (2012). Introduction and Production Oil Seed Crops. Publication Education Agricultural Promotion. Tehran. 209 p.
Moradi Telavat, M. R., Siadat, S. A. Nadian, H., & Fathi, G. (2008). Effect of nitrogen and boron on canola yield and yield component in Ahwaz, Iran. International Journal of Agriculture Research, 3(6), 415-422.
Morovati, I., Kordenaeej, A .A., & Babaei, H. R. (2021). Evaluation of Drought Tolerance Indices in Soybeans. Journal of Crop Breeding, 13(17), 109-118.
Mortazavian, M., & Azizi-Nia, S. (2014). Nonparametric stability analysis in multi environment trial of canola. Turk Journal Field Crops, 19, 108-117.
Naderi, A., Majidi Heravan, I., Hashemi Dezfuli, A. A., Rezaei, A. A., & Noor Mohammadi, Gh. (1999). Effectus tolerantiae Aestimationis Indicatores seges Tolerantiae ad Accensiones Environmentales et Introductio Novi Index. Crop Breeding Journal. Seed and Plant Improvement Institute, 15(4), 402-390.  
Naghavi, M. R., Pour-Aboghadareh, A. R., & Khalili, M. (2013). Evaluation of Drought Tolerance Indices for Screening Some of Corn (Zea mays L.) Cultivars under Environmental Conditions. Notulae science biology, 5(3), 388-393. (In Persian)
Naqavi, M., Kalili, M., & Tavassoli, A. (2021). Comparison of some drought tolerance indices in Iranian and foreign safflower (Carthamus tinctorius L.) cultivars. Journal of Arid Biome, 10(2), 191-175.
Nassar, R., & Huhn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures on phenotypic stability. Biometrics, 43, 45-53.
Qasemian Ardestani, A., Jahan, M., & Shirani Rad, A. H. (2019). Investigatio qualitativa notarum  raptorum cultorum in autumno et hyeme sub impressione diversarum regiminum irrigationum. Environmental stress in Crop Scientiae, 12(2), 443-429. (In Persian)
Raman, A., Verulkar, S., Mandal, N., Variar, M., Shukla, V., Dwivedi, J., Singh, B., Singh, O., Swain, P., Mall, A., Robin, S., Chandrababu, R., Jain, A., Ram, T., Hittalmani, S., Haefele, S., Piepho, H. P., & Kumar, A. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice. 5, 31.28.
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21, 943-946.
Shirani Rad, M. H., Naeimi, M., & Nasrasfahani, Sh. (2010). Aestimatio siccitatis tolerantiae in rapacitate (Brassica napus L.) genotypes. Journal of Crop Scientiae, 12(2), 126-112.
Yousefi, A. (2017). Aestimatio siccitatis tolerantiae indices in tribus speciebus raptorum (Brassica napus L.) sub restrictionis conditionibus irrigationes. Environmental stress in Crop Scientiae, 10(2), 276. (In Persian)