نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه باغبانی، دانشکدۀ کشاورزی، دانشگاه ولایت ایرانشهر، ایرانشهر، ایران. رایانامه: m.zafaranieh@velayat.ac.ir‎

2 گروه ژنتیک و تولید گیاهی، دانشکده کشاورزی، دانشگاه ولی‌عصر رفسنجان (عج)، رفسنجان، ایران. رایانامه: armanazari@vru.ac.ir

چکیده

این پژوهش به‌منظور کمی‌سازی واکنش سرعت جوانه‌زنی گیاه گوار (Cyamopsis tetragonoloba) نسبت به دما و پتانسیل آب انجام گرفت. بدین‌منظور، مطالعه‌ای در آزمایشگاه دانشگاه ولی‌عصر(عج) رفسنجان در سال 1399، آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار به‌منظور کمی‌سازی واکنش سرعت جوانه‌زنی گیاه گوار نسبت دما (تیمارهای دمایی پنج، 10، 15، 20، 25، 30 و 35 درجه سانتی‌گراد) و تنش خشکی (پتانسیل آب صفر، 2/0-، 4/0-، 6/0-، 8/0-، 1- مگاپاسگال)( انجام شد. نتایج این آزمایش نشان داد که مدل بتا بهترین مدل برای توصیف تأثیر دما و پتانسیل آب بر سرعت جوانه‌زنی بود. با توجه به پتانسیل‌های آب مختلف، محدوده دمای پایه، مطلوب و حداکثر برای جوانه­زنی بذر گوار به‌ترتیب از 3/7 تا 12، 1/22 تا 8/25 و 2/32 تا 36 درجه سانتی‌گراد برآورد شد. ساعت بیولوژیکی موردنیاز در غلظت‌های مختلف پتانسیل آب از 24/43 تا 3/136 ساعت متفاوت بود. در مدل زمان دما رطوبتی، ثابت دما رطوبتی، پتانسیل آب پایه و دمای پایه به‌ترتیب 3/268 مگاپاسگال درجه سانتی‌گراد در ساعت، 103/1- مگاپاسگال و 36/8 درجه سانتی‌گراد تخمین زده شد. از داده‌های به‌دست‌آمده از این مدل‌ها می‌توان برای پیش‌بینی و مقدار مقاومت این گیاه در برابر تنش خشکی در مرحله جوانه‌زنی در استقرار و مدیریت بهتر گیاه گوار برای کشت در مناطق مختلف استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Seed Germination Modeling of Guar (Cyamopsis tetragonoloba), Affected by Temperature and Water Potential: Hydrothermal Time Model

نویسندگان [English]

  • mohsen zafaranieh 1
  • arman Azari 2

1 Corresponding Author, Department of Horticulture, Faculty of Agriculture, Velayat University, Iranshahr, Iran. E-mail: m.zafaranieh@velayat.ac.ir‎

2 Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: armanazari@vru.ac.ir

چکیده [English]

The present study tries to quantify germination response of Guar (Cyamopsis tetragonoloba) to temperature and water potential. Performed in Vali-e-Asr University laboratory in 2020, it is a completely randomized design in a factorial arrangement with four replications. It aims at quantifying the rate of Guar germination in response to temperature, and water potential. The seeds have been germinated at seven temperatures (5, 10, 15, 20, 25, 30, and 35°C) and six water potentials (0, -0.2, -0.4, -0.6, -0.8, and -1 MPa). The results reveal that the Beta function is suitable for describing the response of seed germination temperature, and water potential. Under different water potentials, base, optimum, and maximum temperatures have been 7.3-12°C, 22.1-25.8°C, and 32.2-36°C, respectively. The hydrothermal time parameters are 268.3 bar °C h, -1.103 MPa and, 8.36°C for ɵHT (hydrothermal time constant). The data obtained from these models can be used to establish and manage guar for cultivation in different areas.

کلیدواژه‌ها [English]

  • Cardinal temperature
  • Germination
  • Hydrothermal time model
  • Temperature
  • Water potential
Ahmad, S., Opena, J.L., & Chauhan, B.S. (2015). Seed germination ecology of doveweed (Murdannia nudiflora) and its implication for management in dry-seeded rice. Weed Science, 63, 491-501. https://doi.org/10.1614/WS-D-14-00115.1
Allen, P.S., Meyer, S.E., & Khan, M.A. (2000). Hydrothermal time as a tool in comparative germination studies. pp. 401-410 in Black, M.; Bradford, K.J.; Vázquez-Ramos, J. (Eds) Seed biology: Advances and applications. Wallingford, CAB International.
Alvarado, V., & Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell and Environment, 24(8), 1061-1069.‏ https://doi.org/10.1046/j.1365-3040.2002.00894.x
Baath, G. S., Kakani, V. G., Gowda, P. H., Rocateli, A. C., Northup, B. K., Singh, H., & Katta, J. R. (2020). Guar responses to temperature: Estimation of cardinal temperatures and photosynthetic parameters. Industrial Crops and Products, 145, 111940-111949.‏ https://doi.org/10.1016/j.indcrop.2019.111940
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Science, 50, 248-260.
Bradford, K.J. (1995). Water relations in seed germination. pp. 351-396 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.
Chamorro, D., Luna, B., Ourcival, J. M., Kavgacı, A., Sirca, C., Mouillot, F., & Moreno, J. M. (2017). Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biology, 19(1), 23-31.‏ https://doi.org/10.1111/plb.12450
Fallahi, H. R., Mohammadi, M., Aghhavani-Shajari, M., & Ranjbar, F. (2015). Determination of germination cardinal temperatures in two basils (Ocimum basilicum L.) cultivars using non-linear regression models. Journal of Applied Research on Medicinal and Aromatic Plants, 2 (4), 140-145.‏ https://doi.org/10.1016/j.jarmap.2015.09.004
Ghaderi-Far, F., Alimagham, S. M., Kameli, A. M., & Jamali, M. (2012). Plantago ovata Seed germination and emergence as affected by environmental factors and planting depth. Journal of Plant Production, 6, 1735-8043. Doi: 10.1.1.872.1981&rep=rep1&type=pdf
Golzardi, F., Vazan, S., Moosavinia, H., & Tohidloo, G. (2012). Effects of salt and drought stresses on germination and seedling growth of swallow wort (Cynanchum acutum L.). Research Journal of Applied Sciences, Engineering and Technology, 4 (21), 4524-4529.‏ doi=10.1.1.1056.3441&rep
Grover, K., Singla, S., Angadi, S., Begna, S., Schutte, B., & Leeuwen, D. (2016). Growthand yield of guar (Cyamopsis tetragonoloba L.) genotypes under different planting dates in the semi-arid southern high plains. American Journal of Plant Sciences, 7, 1246-1258. http://dx.doi.org/10.4236/ajps.2016.78120
Grundy, A.C., Phelps, K., Reader, R.J., & Burston, S. (2000). Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytology. 148, 433-444. https://doi.org/10.1046/j.1469-8137.2000.00778.x
Gummerson, R. J. (1986). The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37(6), 729-741.‏ https://doi.org/10.1093/jxb/37.6.729
Hardegree, S. P., Jones, T. A., & Vactor, S. S. V. (2002). Variability in Thermal response of Primed and Non‐Primed Seeds of Squirreltail [Elymus elymoides Raf. Swezey and Elymus multisetus JG Smith. ME Jones]. Annals of Botany, 89,311-319.
Hema, Y., & Shalendra, A. (2014). An analysis of performance of guar crop in india guar cultivation practices p: 17-31 Prepared by CCS National Institute of Agricultural Marketing and Jaipur for United States Department of Agriculture (USDA), New Delhi
Jami Al-Ahmadi, M., & Kafi, M. (2007). Cardinal temperatures for germination of Kochia scoparia L.  Journal Arid Environment, 68, 308-314.
Kamkar, B., Jami Al-Alahmadi, M., Mahdavi-Damghani, A., & Villalobos, F. J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) Seeds to germinate using non-linear regression models.  Industrial Crops and Products, 35, 192-198.
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51 (5), 914-920.  https://dx.doi.org/10.1104%2Fpp.51.5.914
Onofri, A., Benincasa, P., Mesgaran, M. B., & Ritz, C. (2018). Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy, 101: 129-139.‏ https://doi.org/10.1016/j.eja.2018.08.011
Piper, E. L., Boote, K. J., Jones, J. W., & Grimm, S. S. (1996). Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36, 1606– 1614. https://doi.org/10.2135/cropsci1996.0011183X003600060033x
Rai, P. S., Dharmatti, P. R., Shashidhar, T. R., Patil, R. V., & Patil, B. R. (2012). Genetic variability studies in clusterbean [Cyamopsis tetragonoloba (L.) Taub]. Karnataka Journal of Agricultural Sciences, 25(1),doi=10.1.1.988.3128&rep=rep1&type=pdf
Ritchie, J. T. (1991). Wheat phasic development. Modeling Plant and Soil Systems, 31, 31-54. https://doi.org/10.2134/agronmonogr31.c3
Rouan, L., Audebert, A., Luquet, D., Roques, S., Dardou, A., & Gozé, E. (2018). Cardinal temperatures variability within a tropical japonica rice diversity panel. Plant Production Science, 21 (3), 256-265.‏ https://doi.org/10.1080/1343943X.2018.1467733
Rowse, H. R., & Finch-Savage, W. E. (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub and supra-optimal temperature. New Phytology, 158, 101-108. https://doi.org/10.1046/j.1469-8137.2003.00707.x
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Ulian, T., Way, M., Castillo-Lorenzo, E., &Flores-Ortíz, C. M. (2019). Thermal Time and Cardinal Temperatures for Germination of Cedrela odorata L. Forests, 10 (10), 841.849. https://doi.org/10.3390/f10100841
Sester, M., Tricault, Y., Darmency, H., & Colbach, N. (2008). GeneSys-Beet: A model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Res. 107, 245-256.
Sevik, H., & Cetin, M. (2015). Effects of water stress on seed germination for select land scape plants. Polish Journal of Environmental Studies, 24 (2), 689-693.‏ https://doi.org/10.15244/pjoes/30119
Soltani, A., Robertson, M. J., Torab, B., Yousefi-Daz, M., & Sarparast, R. (2006). Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138, 156-167. https://doi.org/10.1016/j.agrformet.2006.04.004
Teimori, H., Balouchi, H., Moradi, A., & Soltani, E. (2021). Quantifying seed germination response of deteriorated Trigonella foenum-graecum L. seed to temperatures and water potentials: Thermal time, hydrotime and hydrothermal time models. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100276.‏ https://doi.org/10.1016/j.jarmap.2020.100276
Tolyat, M. A., Afshari, R. T., Jahansoz, M. R., Nadjafi, F., & Naghdibadi, H. A. (2014). Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis daenensis. Seed Science and Technology, 42 (1), 28-35.‏ https://doi.org/10.15258/sst.2014.42.1.03
Torabi, B., Attarzadeh, M., & Soltani, A. (2013). Germination response to temperature in different safflower (Carthamus tinctorius) Cultivars.  Seed Technology, 47-59.
Yadav, R. S., Hash, C. T., Bidinger, F. R., Devos, K. M., & Howarth, C. J. (2004). Genomic regions associated with grain yield and aspects of postflowering drought tolerance in pearl millet across environments and tester background, Euphytica 136, 265-277. DOI: 10.1023/B:EUPH.0000032711.34599.3a
Zaferanieh, M., Mahdavi, B., & Torabi, B. (2020). Effect of temperature and water potential on Alyssum homolocarpum seed germination: Quantification of the cardinal temperatures and using hydro thermal time. South African Journal of Botany, 131, 259-266.‏ doi: 10.1016/j.sajb.2020.02.006