Ahmad, S., Opena, J.L., & Chauhan, B.S. (2015). Seed germination ecology of doveweed (Murdannia nudiflora) and its implication for management in dry-seeded rice. Weed Science, 63, 491-501. https://doi.org/10.1614/WS-D-14-00115.1
Allen, P.S., Meyer, S.E., & Khan, M.A. (2000). Hydrothermal time as a tool in comparative germination studies. pp. 401-410 in Black, M.; Bradford, K.J.; Vázquez-Ramos, J. (Eds) Seed biology: Advances and applications. Wallingford, CAB International.
Alvarado, V., & Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell and Environment, 24(8), 1061-1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x
Baath, G. S., Kakani, V. G., Gowda, P. H., Rocateli, A. C., Northup, B. K., Singh, H., & Katta, J. R. (2020). Guar responses to temperature: Estimation of cardinal temperatures and photosynthetic parameters. Industrial Crops and Products, 145, 111940-111949. https://doi.org/10.1016/j.indcrop.2019.111940
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Science, 50, 248-260.
Bradford, K.J. (1995). Water relations in seed germination. pp. 351-396 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.
Chamorro, D., Luna, B., Ourcival, J. M., Kavgacı, A., Sirca, C., Mouillot, F., & Moreno, J. M. (2017). Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biology, 19(1), 23-31. https://doi.org/10.1111/plb.12450
Fallahi, H. R., Mohammadi, M., Aghhavani-Shajari, M., & Ranjbar, F. (2015). Determination of germination cardinal temperatures in two basils (Ocimum basilicum L.) cultivars using non-linear regression models. Journal of Applied Research on Medicinal and Aromatic Plants, 2 (4), 140-145. https://doi.org/10.1016/j.jarmap.2015.09.004
Ghaderi-Far, F., Alimagham, S. M., Kameli, A. M., & Jamali, M. (2012). Plantago ovata Seed germination and emergence as affected by environmental factors and planting depth. Journal of Plant Production, 6, 1735-8043. Doi: 10.1.1.872.1981&rep=rep1&type=pdf
Golzardi, F., Vazan, S., Moosavinia, H., & Tohidloo, G. (2012). Effects of salt and drought stresses on germination and seedling growth of swallow wort (Cynanchum acutum L.). Research Journal of Applied Sciences, Engineering and Technology, 4 (21), 4524-4529. doi=10.1.1.1056.3441&rep
Grover, K., Singla, S., Angadi, S., Begna, S., Schutte, B., & Leeuwen, D. (2016). Growthand yield of guar (Cyamopsis tetragonoloba L.) genotypes under different planting dates in the semi-arid southern high plains. American Journal of Plant Sciences, 7, 1246-1258. http://dx.doi.org/10.4236/ajps.2016.78120
Grundy, A.C., Phelps, K., Reader, R.J., & Burston, S. (2000). Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytology. 148, 433-444. https://doi.org/10.1046/j.1469-8137.2000.00778.x
Gummerson, R. J. (1986). The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37(6), 729-741. https://doi.org/10.1093/jxb/37.6.729
Hardegree, S. P., Jones, T. A., & Vactor, S. S. V. (2002). Variability in Thermal response of Primed and Non‐Primed Seeds of Squirreltail [Elymus elymoides Raf. Swezey and Elymus multisetus JG Smith. ME Jones]. Annals of Botany, 89,311-319.
Hema, Y., & Shalendra, A. (2014). An analysis of performance of guar crop in india guar cultivation practices p: 17-31 Prepared by CCS National Institute of Agricultural Marketing and Jaipur for United States Department of Agriculture (USDA), New Delhi
Jami Al-Ahmadi, M., & Kafi, M. (2007). Cardinal temperatures for germination of Kochia scoparia L. Journal Arid Environment, 68, 308-314.
Kamkar, B., Jami Al-Alahmadi, M., Mahdavi-Damghani, A., & Villalobos, F. J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) Seeds to germinate using non-linear regression models. Industrial Crops and Products, 35, 192-198.
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51 (5), 914-920. https://dx.doi.org/10.1104%2Fpp.51.5.914
Onofri, A., Benincasa, P., Mesgaran, M. B., & Ritz, C. (2018). Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy, 101: 129-139. https://doi.org/10.1016/j.eja.2018.08.011
Piper, E. L., Boote, K. J., Jones, J. W., & Grimm, S. S. (1996). Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36, 1606– 1614. https://doi.org/10.2135/cropsci1996.0011183X003600060033x
Rai, P. S., Dharmatti, P. R., Shashidhar, T. R., Patil, R. V., & Patil, B. R. (2012). Genetic variability studies in clusterbean [Cyamopsis tetragonoloba (L.) Taub]. Karnataka Journal of Agricultural Sciences, 25(1),doi=10.1.1.988.3128&rep=rep1&type=pdf
Ritchie, J. T. (1991). Wheat phasic development. Modeling Plant and Soil Systems, 31, 31-54. https://doi.org/10.2134/agronmonogr31.c3
Rouan, L., Audebert, A., Luquet, D., Roques, S., Dardou, A., & Gozé, E. (2018). Cardinal temperatures variability within a tropical japonica rice diversity panel. Plant Production Science, 21 (3), 256-265. https://doi.org/10.1080/1343943X.2018.1467733
Rowse, H. R., & Finch-Savage, W. E. (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub and supra-optimal temperature. New Phytology, 158, 101-108. https://doi.org/10.1046/j.1469-8137.2003.00707.x
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Ulian, T., Way, M., Castillo-Lorenzo, E., &Flores-Ortíz, C. M. (2019). Thermal Time and Cardinal Temperatures for Germination of Cedrela odorata L. Forests, 10 (10), 841.849. https://doi.org/10.3390/f10100841
Sester, M., Tricault, Y., Darmency, H., & Colbach, N. (2008). GeneSys-Beet: A model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Res. 107, 245-256.
Sevik, H., & Cetin, M. (2015). Effects of water stress on seed germination for select land scape plants. Polish Journal of Environmental Studies, 24 (2), 689-693. https://doi.org/10.15244/pjoes/30119
Soltani, A., Robertson, M. J., Torab, B., Yousefi-Daz, M., & Sarparast, R. (2006). Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138, 156-167. https://doi.org/10.1016/j.agrformet.2006.04.004
Teimori, H., Balouchi, H., Moradi, A., & Soltani, E. (2021). Quantifying seed germination response of deteriorated Trigonella foenum-graecum L. seed to temperatures and water potentials: Thermal time, hydrotime and hydrothermal time models. Journal of Applied Research on Medicinal and Aromatic Plants, 20, 100276. https://doi.org/10.1016/j.jarmap.2020.100276
Tolyat, M. A., Afshari, R. T., Jahansoz, M. R., Nadjafi, F., & Naghdibadi, H. A. (2014). Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis daenensis. Seed Science and Technology, 42 (1), 28-35. https://doi.org/10.15258/sst.2014.42.1.03
Torabi, B., Attarzadeh, M., & Soltani, A. (2013). Germination response to temperature in different safflower (Carthamus tinctorius) Cultivars. Seed Technology, 47-59.
Yadav, R. S., Hash, C. T., Bidinger, F. R., Devos, K. M., & Howarth, C. J. (2004). Genomic regions associated with grain yield and aspects of postflowering drought tolerance in pearl millet across environments and tester background, Euphytica 136, 265-277. DOI: 10.1023/B:EUPH.0000032711.34599.3a
Zaferanieh, M., Mahdavi, B., & Torabi, B. (2020). Effect of temperature and water potential on Alyssum homolocarpum seed germination: Quantification of the cardinal temperatures and using hydro thermal time. South African Journal of Botany, 131, 259-266. doi: 10.1016/j.sajb.2020.02.006