نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی. اردبیل، ایران. رایانامه: zhilanazari@uma.ac.ir

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران. رایانامه: raouf_ssharifi@uma.ac.ir

3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی. اردبیل، ایران. رایانامه: hamed.narimani.72@uma.ac.ir

4 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی. اردبیل، ایران. رایانامه: mohammadiisara1@gmail.com

چکیده

به­منظور بررسی تأثیر محدودیت آبی، کودهای زیستی و نانوسیلیکون بر محتوای اسمولیت­های سازگار و صفات بیوشیمیایی تریتیکاله، آزمایشی به‌صورت فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی در سه تکرار در گلخانه پژوهشی دانشگاه محقق اردبیلی در سال 99-1398 اجرا شد. فاکتورهای موردبررسی شامل آبیاری (آبیاری کامل به­عنوان شاهد، محدودیت ملایم آبی با قطع آبیاری در 50 درصد مرحله آبستنی، محدودیت شدید آبی یا قطع آبیاری در 50 درصد مرحله سنبله­دهی)، کاربرد کودهای زیستی (عدم کاربرد به­عنوان شاهد، کاربرد ورمی­کمپوست، میکوریزا، کاربرد هم‌زمان ورمی­کمپوست و میکوریزا) و محلول­پاشی نانوسیلیکون (محلول­پاشی با آب به­عنوان شاهد و محلول­پاشی دو گرم در لیتر نانوسیلیکون) بود. نتایج نشان داد که کاربرد هم‌زمان ورمی­کمپوست، میکوریزا و محلول­پاشی نانوسیلیکون تحت شرایط قطع آبیاری در مرحله آبستنی، فعالیت آنزیم­های کاتالاز، پلی­فنل­اکسیداز، محتوای پرولین و قندهای محلول را به‌ترتیب 17/49، 64/50، 92/44 و 22/52 درصد نسبت به عدم کاربرد ورمی­کمپوست، میکوریزا و نانوسیلیکون در شرایط آبیاری کامل افزایش داد. هم‌چنین کاربرد هم‌زمان ورمی­کمپوست، میکوریزا و محلول­پاشی نانوسیلیکون در شرایط آبیاری کامل محتوای پراکسیدهیدروژن و مالون­دی­آلدهید را به‌ترتیب 34/55 و 64/53 درصد کاهش و عملکرد دانه را 52/59 درصد نسبت به شرایط عدم کاربرد کودهای زیستی و نانوسیلیکون تحت شرایط قطع آبیاری در مرحله آبستنی افزایش داد. به­نظر می­رسد کاربرد کودهای زیستی و نانوسیلیکون می‌تواند با بهبود صفات بیوشیمیایی، عملکرد دانه را در شرایط محدودیت آبی افزایش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of water limitation, biofertilizers and nano silicon on compatible osmolytes and biochemical traits of triticale

نویسندگان [English]

  • Zhila Nazari 1
  • Raouf Seyed sharif 2
  • Hamed Narimani 3
  • Sara Mohammadi Kale Sarlou 4

1 Corresponding Author, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: zhilanazari@uma.ac.ir

2 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: raouf_ssharifi@uma.ac.ir

3 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: hamed.narimani.72@uma.ac.ir

4 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: mohammadiisara1@gmail.com

چکیده [English]

In order to study the effects of water limitation, biofertilizers and nanosilicon on compatible osmolytes and biochemical traits of triticale, an experiment as factorial was conducted based on randomized complete block design with three replications in research greenhouse faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabil during 2020. The experimental factors were included irrigation at three levels (full irrigation as control; irrigation withholding at 50% of heading as moderate water limitation and irrigation withholding at 50% of booting stages as severe water imitation), application of bio fertilizers (no application of bio fertilizers as control, application of vermicompost, Mycorrhiza, both application vermicompost and Mycorrhiza), foliar application of nano silicon (foliar application with water as control and foliar application of 2 g.L-1 nano silicon). The results showed that both application of vermicompost, Mycorrhiza and foliar application nano silicon under irrigation withholding in booting stage, increased the activity of catalase, polyphenol oxidase enzymes, proline and soluble sugar content (49.17, 50.64, 44.92 and 52.22% respectively) compared to no application of bio fertilizers and nano silicon under normal irrigation condition. Also, both application of vermicompost, Mycorrhiza and foliar application of nano silicon in normal irrigation condition decreased hydrogen peroxide and malondialdehyde content (55.34 and 53.64% respectively) and grain yield increased 59.52% compared to no application of bio fertilizers and nano silicon under irrigation withholding in booting stage condition. It seems that the application of biofertilizers and nano silicon can increase grain yield triticale under water limitation due to improving the biochemical traits.

کلیدواژه‌ها [English]

  • Anthocyanins
  • Antioxidant enzymes
  • Drought stress
  • Mycorrhiza
  • Vermicompost
Abbasi, A. R., Lotfi. M., & mohammadi, J. (2018). Response of antioxidant defense mechanism and wheat yield changes to drought stress with application of different concentrations of nano-silicone and nano-titanium. Rainfed agriculture of Iran, 7(1), 79-101. (In Persien)
Abdel Latef, A. A. (2010). Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Research Communications, 38, 43-55. (In Persien)
Adamipour, N., Heiderianpour M. B., & Zarei, M. (2016). Application of vermicompost for reducing the destructive effects of salinity stress on tall fescue turfgrass (Festuca arundinacea Schreb. ‘Queen’). Jounral of soil and plant Interaction, 7 (1), 35-47. (In Persien)
Ageeb Akladious, S., & Mohamed, H. I. (2018). Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of Pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 236, 244- 250.
Aghaei, F. (2019). Effect of uniconazole and biofertilizers on grain filling components and some biochemical and physiological traits of wheat (Triticum aestivum L.) under soil salinity condition. M.Sc. Thesis. Faculty of Agriculture and Natural Resources. University of Mohaghegh Ardabili. (In Persien)
Ahmad, Y. M., Shahlaby E. A., & Shnan, N. T. (2011). The use of organic and inorganic cultures in improving vegetative growth, yield characters and antioxidant activity of roselle plants (Hibiscus sabdariffa L.). African Journal of Biotechnology, 10(11), 1988-1996.
Ahmadi Nouradinvand, F., Seyed Sharifi, R., Ataollah Siadat, S., & Khalilzadeh, R. (2021). Effect of water limitation and application of bio-fertilizer and nano-silicon on yield and some biochemical traits of wheat. Cereal Research, 10(4), 285-298. (In Persien)
Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24, 1337-1344.
Alikhani, S., & Mahmoudi Zarandi, M. (2019). Effect of coinoculation with endomycorrhiza, Pseudomonas aeroginosa and Rhizobium meliloti on Medicago sativa under water stress. Journal of Plant Research, 32(1), 155-166. (In Persien)
Asghari, B., Khademian, R., & Sedaghati, B. (2020). Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae, 263, 109132.
Azeez, J. O., Van Averbeke A. B., & Okorogbona, A. O. M. (2010). Differential responses in yield of pumpkin (Cucurbita maxima L.) and nightshade (Solanum retroflexum Dun.) to the application of three animal manures. Bioresource Technology, 101, 2499-2505.
Bates, L. S., Walderen R. D., & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205- 207.
Bezabih, A., Girmay, G., & Lakewu, A. (2019). Performance of triticale varieties for the marginal highlands of Wag-Lasta, Ethiopia. Cogent Food and Agriculture, 5, 1-11.
Bukhari, M. A., Ahmad, Z., Ashraf, M. Y., Afzal, M., Nawaz, F., Nafees, M., Jatoi, W. N., Malghani, N. A., Shah, A. N., & Manan, A. (2020). Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. https://doi.org/10.1007/s12633-020-00797-4.
Dubios, M., Gilles, K. A., Hamilton, J. K., Roberts P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28, 350-356.
Ebadi, N. (2018). Evalution of yield and some agrophysiological traits of rainfed barley (Hordeum vulgari.) as affected by biofertilizers and supplementary irrigation. M. Sc. Thesis. Faculty of Agriculture and Natural Resources. University of Mohaghegh Ardabili. (In Persien)
Ehdaei, B., Alloush, G. A., Madore, M. A., & Waines, J. G. (2006). Genotype variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water soluble carbohydrates. Crop Science, 46, 2093-2103.
Ehsani, M., Norinia, A. A., & Bakhshi Khaniki, Gh. R. (2009). Effect of salinity and Mycorrhiza on amount of proline in sorghum. Journal of Plant Protection and Food, 3, 11-18.
Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101-1114
Gong, H. Z., Chen, K., Wans, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313-321.
Hajiboland, R., Cherghvareh, L., Dashtebani, F. (2017). Effects of silicon supplementation on wheat plants under salt stress. Journal of Plant Process and Function, 5(18), 1-11.
Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., & Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental and experimental botany, 60(2), 177-182.
He, F., Mu, L., Yan., G. L., Liang, N., Pan, Q., Wang, J., Reeves, M., & Duan, C. (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 15, 9057-9091.
Heshmati, S., Amini Dehaghi, M., & Amirkhiz, F. K. (2016). Effect of chemical and biological phosphorus on antioxidant enzymes activity and some biochemical traits of spring Safflower (Carthamus tinctorius L.) under water deficit stress conditions. Journal of Crop Production and Processing, 6(19), 203-214. DOI: 10.18869/acadpub.jcpp.6.19.203.
Hu, Y.Y., Zhang, Y. L., Yi, X. P., Zhan, D. X., Luo, H. H., Chow, W. S., & Zhang, W. F. (2014). The relative contribution of non-foliar organs of cotton to yield and related physiological characteristics under water deficit. Journal of Integrative Agriculture, 13(5), 975-989. DOI: 10.1016/S2095-3119(13)60568-7.
Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., & Yousaf, B. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. Journal of Environmental Management, 183, 521-529.
Joshi, R., Singh, J., & Vig, A. P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology, 14(1), 137-159.
Kapoor, R., Evelin, H., Mathur, P., & Giri, B. (2013). Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Plant acclimation to environmental stress (Eds. Tuteja, N. and Gill, S. S.), 359-401.
Khalafallah, A. A., & Abo-Ghalia, H. H. (2008). Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth   stages. Journal of Applied Sciences Research, 4, 559-569.
Lattanzio, V., Cardinali, A., Ruta, C., Fortunato, I. M., Lattanzio, V. M. T., & Linsalata, V. (2013). Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environmental and Experimental, Botany, 65, 54-62.
Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39, 949-962.
Liang, X., Zhang, L., Natarajan S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxid Redox Signal, 19 (9), 998-1011.
Liang, Y. C., Zhang, W. H., Chen, Q., Liu Y. L., & Ding, R. X. (2006). Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt stressed barley.
Liang, Y., Sun, W., Zhu, Y., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants- a review, Environmental Pollution, 147, 422-428.
Mamnabi, S. S., Nasrollahzadeh, K., Golezani, G., & Raei, Y. (2020). Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi Journal of Biology Science, 27(3), 797-804.
Mosapour Yahyaabadi, H., & Asgharipour, M. R. (2016). Effects of drought stress and its interaction with silicon on stimulates the antioxidant system and lipid peroxidation in Fennel (Foeniculum vulgar). Plant process and function. 5(16), 71-84. (In Persien)
Mousavi Dehmordy, Z., Gholami, M., & Baninasab, B. (2018). Effect of Vermicompost Fertilizer on Growth and Drought Tolerance of Olive (Olea europaea L. cv. Zard). j. plant proc. func.,7(23), 1-18. (In Persien)
Muscolo, A., Panuccio, M. R., Gioffrè A. M., & Jacobsen, S. E. (2016). Drought and salinity differently affect growth and secondary metabolites of “Chenopodium quinoa Willd” seedlings. Halophytes for Food Security in Dry Lands, 259-275. DOI: 10.1016/B978-0-12- 801854-5.00016-9.
Nemat-Alla, M. M., Badawi, A. M., Hassan, N. M., El-Bastawisy, Z. M., & Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90, 8-18.
Nemat-Alla, M. M., Badawi, A. M., Hassan, N. M., El-Bastawisy Z. M., & Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90, 8-18.
Ouellette, S. M. H., Goyette, C., Labbé, J., Laur, L., Gaudreau, A., Gosselin, M., Dorais, R. K., Deshmukh, R., & Bélanger, R. (2017). Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions Front. Plant Science, 8,  949-956.
Pan, S., Rasul, F., Li, W., Tian, H., Mo, Z., Duan M.,, & Tang, X. (2013). Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Journal of Rice, 6, 9-14.
Rapparini, F., & Penuelas, J. (2014). Mycorrhizal fungi to alleviate drought stress on plant growth. Miransari M (Eds.), In use of microbes for the alleviation of soil stress, 1, 21-42.
Saadatmand, M., & Enteshari, S. (2013). The effects of pretreatment duration with silicon on salt stress in Iranian borage (Echium amoenum Fisch & C.A. mey). JSPI, 3(4), 45-57. (In Persien)
Salehi, A., Ghalavand, A., Sefidkon, F., & Asgharzade, A. (2011). The effect of zeolite, PGPR and vermicompost application on N, P, K concentration, essential oil content and yield in organic cultivation of German Chamomile (Matricaria chamomilla L.). Iranian Journal of Medicinal and Aromatic Plants, 27, 188-201.
Seyed Sharifi, R., & Namvar, A. (2016). Biofertilizers in Agronomy. University of Mohaghegh Ardabili press, 282. (in Persian)
Shalalvand, M., Pazoki, A., Monem, R., & Abdol, M. (2018). The effect of application of vermicompost and salicylic acid on activity of antioxidant enzymes and yield of milk thistle (Silybum Marianum L.) in different irrigation conditions, Agriculture and plant breeding, Iran, 14(2), 49-67. (In Persien(
Shekari, F., Abbasi, A., & Mustafavi, S. H. (2017). Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences, 16 (4), 367-374.
Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean antioxidative systems in two cottons. General and Applied Plant Physiology, 33, 221-234.
Shirani Bidabadi, S., Dehghanipoodeh, S., & Wright, G. C. (2017). Vermicompost leachate reduces some negative effects of salt stress in pomegranate. International Journal of Recycling of Organic Waste in Agriculture, 6, 255-263.
Silva, O. N., Lobato, A. K., Avila, F. W., Costa, L., Oliveira, F., Santos, B. G., Martins, A. P., Lemos, R., Pinho, J., Medeiros, M. B., Cardoso, M., & Andrade, I. P. (2012). silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil and Environment, 58, 481-486.
Stewart, R. C., & Beweley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65, 245-248.
Sudhakar, C., Lakshmi, A., & Giridara Kumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of Mulberry (Morus alba L.) under NaCl salinity. Plant Science, 167, 613-619.
Tofighi, K., Khavari Nejad, R., Najafi, F., Razavi, Kh., & Rejali, F. (2016). XML Interaction effect investigation of arbuscular mycorrhizal fungi and plant growth regulator brassinolide on enhancing to wheat tolerance to salinity tension, Crop physiology, 8 (30), 5-19. (In Persien)
Valinezhad, Z., Gholizadeh, A., Naeemi, M., Gholamalalipour Alamdari, E., & Zarei, M. (2019). Effects of vermicompost and mycorrhizal fungus on quantitative and qualitative traits of medicinal plant Stevia rebaudiana Bertoni. 484-500. (In Persien)
Verma, S., & Dubeym, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their etabolism in rice. Biologia Plantarum, 1, 117-123.
Vitrac, X., Larronde, F., Krisa, S., Decendit, A., Deffieux, G., & Mérillon, J. M. (2000). Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry, 53, 659-665.
Wagner, G‌. J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars free amino acids, and anthocyanins in protoplast. Plant Physiology, 64, 88-93.
Wang, Y., Ma, F., Li, M., Liang, D., & Zou, J. (2011). Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 64, 63-74.
Wu, H., Wu, X., Li, Z., Duan, L., & Zhang, M. (2012).  Physiological evaluation of drought stress tolerance and recovery in Cauliflower (Brassica oleraceavar Botrytis.) seedlings treated with methyl jasmonate and coronatine. Journal of Plant Growth Regulation, 31, 113-123.
Yang, S., Wang, Y., Liu, R., Li, Q., & Yang, Z. (2018). Effects of straw application on nitrate leaching in fields in the Yellow River irrigation zone of Ningxia, China. Scientific Reports, 8(1), 954.
Young, L. S., Hameed, A., Peng, S. Y., Shan Y. H., & Wu, S. P. (2013). Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Applied Soil Ecology, 66, 40-47.
Zafari, M., & Jahanbakhsh, S. (2018). The impact of bio-fertilizers to increase compatibility osmolytes in the alfalfa under water stress conditions, Plant Research (Iranian Biology), 31(1), 156-165. (In Persien)
Zare, H. R., Ghanbarzadeh, Z., Behdad, A., & Mohsenzadeh, S. (2015). Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays) seedlings. Iranian Journal of Plant Biology, 26(7), 59-74.
Zarooshan, M., Abdilzade, A., Sadeghipour, H. R., & Mehrabanjoubani, P. (2020). Comparison of the effect of silicon and nano-silicon on some biochemical and photosynthetic traits of Zea mays L. under salinity stress, 23-38.  (In Persien)
Zhang, K. M., Yu, H. J., Shi, K., Zhou, Y. H., Yu J. Q., & Xia, X. J. (2010). Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Science, 179(3), 202-208.