Abbas, G., Younis, H., Naz, S., Fatima, Z., Hussain, S., Ahmed, M., & Ahmad, S. (2019). Effect of planting dates on agronomic crop production. In: Agronomic crops. Springer: pp: 131-147. https://doi.org/10.1007/978-981-32-9151-5_8
Afzal, M. N., Tariq, M., Ahmed, M., Abbas, G., & Mehmood, Z. (2020). Managing planting time for cotton production. In: Cotton production and uses. Springer: pp: 31-44. https://doi.org/10.1007/978-981-15-1472-2_3
Ahmed, N., Chaudhry, U. K., Ali, M. A., Ahmad, F., Sarfraz, M., & Hussain, S. (2020). Salinity tolerance in cotton. In: Cotton production and uses. Springer: pp: 367-391. https://doi.org/10.1007/978-981-15-1472-2_19
Akramghaderi, F., Latifi, N., Rezaei, J., & Soltani, A. (2003). Effects of planting date on the phenology and morphology of three cotton cultivars in gorgan. Iranian Journal of Agriculture Science, 34(1), 221-230. (In Persian).
Ali, A., Qamar, R., Safdar, M. E., Saleem, S., Ullah, S., Javed, M. A., & Hasan, S. W. (2021). Development and growth: Influence of sowing dates on performance of cotton cultivars. Pakistan Journal of Agricultural Research, 34(1), 23-28. https://doi.org/10.17582/journal.pjar/2021/34.1.23.28
Astaneh, R. K., Bolandnazar, S., Nahandi, F. Z., & Oustan, S. (2019). Effects of selenium on enzymatic changes and productivity of garlic under salinity stress. South African Journal of Botany, 121, 447-455. https://doi.org/10.1016/j.sajb.2018.10.037
Bagherabadi, H., Armin, M., & Filekesh, E. (2019). The effect of sowing date on yield and yield components of cotton planted in ultra narrow rows and conventional rows. Iranian Journal of Cotton Researches, 7(1), 1-14. (In Persian).
Bakht, J., Khan, M. J., Shafi, M., Khan, M. A., & Sharif, M. (2012). Effect of salinity and aba application on proline production and yield in wheat genotypes. Pakistan Journal of Botany, 44(3), 873-878.
Barros, T. C., de Mello Prado, R., Roque, C. G., Arf, M. V., & Vilela, R. G. (2019). Silicon and salicylic acid in the physiology and yield of cotton. Journal of plant nutrition, 42(5), 458-465. https://doi.org/10.1080/01904167.2019.1567765
Bednarz, C. W., Shurley, W. D., & Anthony, W. S. (2002). Losses in yield, quality, and profitability of cotton from improper harvest timing. Agronomy Journal, 94(5), 1004-1011. https://doi.org/10.2134/agronj2002.1004
Bednarz, C. W., Shurley, W. D., Anthony, W. S., & Nichols, R. L. (2005). Yield, quality, and profitability of cotton produced at varying plant densities. Agronomy Journal, 97(1), 235-240.
Borzoyi, Z., Armin, M., & Marvi, H. (2021). Agrophysiological responses of cotton to time and type of stress moderators on different planting date under saline conditions. Crop Science Research in Arid Regions, In Press. (In Persian).
Chen, H., & Jiang, J.-G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309-319. https://doi.org/10.1139/A10-014
Davidonis, G. H., Johnson, A. S., Landivar, J. A., & Fernandez, C. J. (2004). Cotton fiber quality is related to boll location and planting date. Agronomy Journal, 96(1), 42-47. https://doi.org/10.2134/agronj2004.0042
Dong, H., Li, W., Tang, W., Li, Z., Zhang, D., & Niu, Y. (2006). Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the yellow river valley of china. Field Crops Research, 98(2-3), 106-115. https://doi.org/10.1016/j.fcr.2005.12.008
Dong, Y. J., Jinc, S. S., Liu, S., Xu, L. L., & Kong, J. (2014). Effects of exogenous nitric oxide on growth of cotton seedlings under nacl stress. Journal of Soil Science and Plant Nutrition, 14(1), 1-13. https://doi.org/10.4067/s0718-95162014005000001
El-Beltagi, H. S., Ahmed, S. H., Namich, A. A. M., & Abdel-Sattar, R. R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26, 1091-1100.
El Sabagh, A., Omar, A. M., El Menshawi, M., & El Okkiah, S. (2018). Foliar application of organic compounds stimulate cotton (Gossypium barbadense L.) to survive late sown condition. Open Agriculture, 3(1), 684-697. https://doi.org/10.1515/opag-2018-0072
Heitholt, J., Schmidt, J., & Mulrooney, J. E. (2001). Effect of foliar-applied salicylic acid on cotton flowering, boll retention, and yield. Materials and Methods, 46 (2), 105-109.
Hussein, M., Balbaa, L., & Gaballah, M. (2007). Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences, 3(4), 321-328.
Iqbal, M., & Khan, M. A. (2011). Response of cotton genotypes to planting date and plant spacing. Frontiers of Agriculture in China, 5(3), 262-267. https://doi.org/10.1007/s11703-011-1099-x
Jafaraghaei, M., & Jalali, A. H. (2012). Effect of irrigation-water salinity on yield and water use efficiency of three cultivars of cotton (Gossypium hirsutum L.). Journal of Crop production and processing, 2(5), 97-108. (In Persian).
Kaur, P., Bhagria, T., Mutti, N. K., Rinwa, A., Mahajan, G., &Chauhan, B. S. (2019). Cotton production in australia. In K. Jabran and B. S. Chauhan (Ed.), Cotton Production: 341-357. https://doi.org/10.1002/9781119385523.ch16
Khan, A., Najeeb, U., Wang, L., Tan, D. K. Y., Yang, G., Munsif, F., Ali, S., & Hafeez, A. (2017). Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Research, 209, 129-135. https://doi.org/10.1016/j.fcr.2017.04.019
Kim, Y., Mun, B.-G., Khan, A. L., Waqas, M., Kim, H.-H., Shahzad, R., Imran, M., Yun, B.-W., & Lee, I.-J. (2018). Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. Plos one, 13(3), e0192650. https://doi.org/10.1371/journal.pone.0192650
Liu, S., Dong, Y., Xu, L., & Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73(1), 67-78. https://doi.org/10.1007/s10725-013-9868-6
Lou, Y., Sun, X., Chao, Y., Han, F., Sun, M., Wang, T., Wang, H., Song, F., & Zhuge, Y. (2019). Glycinebetaine application alleviates salinity damage to antioxidant enzyme activity in alfalfa. Pakistan Journal of Botany, 51(1), 19-25.
Ma, X., Wang, Y., Xie, S., Wang, C., & Wang, W. (2007). Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russian Journal of Plant Physiology, 54(4), 472-479. https://doi.org/10.1134/s1021443707040061
Mauget, S., Ulloa, M., & Dever, J. (2019). Planting date effects on cotton lint yield and fiber quality in the us southern high plains. Agriculture, 9(4), 82-91. https://doi.org/10.3390/agriculture9040082
Mehrabadi, H. R. (2017). Effect of different planting dates and methods on quantity and quality traits of varamin cotton cultivar. Journal of Crop production and processing, 7(2), 61-72. (In Persian).
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
Panjeh Koub, A., Galeshi, S. A., Zeynali, E., & Ghajari, A. A. G. (2008). Effect of planting date and plant density on morphological characteristics of cotton (Gossypium hirsutum cv. Siokra). Journal of Agricultural Sciences and Natural Resources, 14(5), 25-38. (In Persian).
Pirasteh, H., Emami, Y., Rousta, M., & Hashemi, S. (2016). Effect of salicylic acid on biochemical attributes and grain yield of barley (Horedum vulgare L. cv. nosrat) under saline conditions. Iranian Journal of Crop Sciences, 18(3), 232-244. (In Persian).
Savari, A., Fotokian, M. H., & Barzali, M. (2010). Evaluation of glycine betaine effects on some agronomic traits of cotton. Jouran of Agronomy Sciences, 1(1), 67-76. (In Persian).
Sedighi, E., Sirousmehr, A., Ramezani, M., Asgharipour, M. R., & Esmaelian, Y. (2012). Investigation the yield and qualitative traits of cotton under different planting dates in barley-cotton double cropping system. Journal of Iranian Plant Echophysiological Research, 6(4), 26-36. (In Persian).
Shahverdi, M. A., Omidi, H., & Damalas, C. A. (2020). Foliar fertilization with micronutrients improves stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany, 43(1), 55-65. https://doi.org/10.1007/s40415-020-00588-6
Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science, 164(3), 317-322.
Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y. A., El‐Esawi, M. A., Pan, R., & Wan, Q. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. https://doi.org/10.1016/s0168-9452(02)00415-6
Siddiqui, M. H., Alamri, S. A., Al-Khaishany, Y., Al-Qutami, M. A., & Ali, H. M. (2018). Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai Journal of Science, 45(3), 1296-1306.
Singh, M., Kumar, J., Singh, V., & Prasad, S. (2014). Proline and salinity tolerance in plants. Biochem Pharmacol, 3(6), 2167-0501.1000. https://doi.org/10.4172/2167-0501.1000e170
Soleimannejad, Z., Abdolzadeh, A., & Sadeghipour, H. R. (2019). Beneficial effects of silicon application in alleviating salinity stress in halophytic puccinellia distans plants. Silicon, 11(2), 1001-1010. https://doi.org/10.1007/s12633-018-9960-7
Vázquez, M. N., Guerrero, Y. R., de la Noval, W. T., Gonzalez, L. M., & Zullo, M. A. T. (2019). Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Australian Journal of Crop Science, 13(1), 115-126.
Wrather, J., Phipps, B., Stevens, W., Phillips, A., & Vories, E. (2008). Cotton planting date and plant population effects on yield and fiber quality in the mississippi delta. Journal of Cotton Science, 12(1), 1-10.
Xu, J., Liu, T., Yang, S., Jin, X., Qu, F., Huang, N., & Hu, X. (2019). Polyamines are involved in gaba-regulated salinity-alkalinity stress tolerance in muskmelon. Environmental and Experimental Botany, 164, 181-189. https://doi.org/10.1016/j.envexpbot.2019.05.011
Ye, Y., Wang, W., Zheng, C., Fu, D., Liu, H., & Shen, X. (2017). Foliar-application of α-tocopherol enhanced salt tolerance of carex leucochlora. Biologia Plantarum, 61(3), 565-570.
Yildirim, E., Turan, M., & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of plant nutrition, 31(3), 593-612.
Zare, M. S., Armin, M., & Marvi, H. (2021). Physiological responses of cotton to stress moderator application on different planting date under saline conditions. Iranian Journal of Science and Technology, Transactions A: Science, 45(1), 11-25.
Zhou, Y., Diao, M., Chen, X., Cui, J., Pang, S., Li, Y., Hou, C., & Liu, H.-y. (2019). Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Scientia Horticulturae, 250, 45-58.
Zhu, G., An, L., Jiao, X., Chen, X., Zhou, G., & McLaughlin, N. (2019). Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean journal of agricultural research, 79(3), 415-424.