نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. رایانامه: f.delavarnia@sanru.ac.ir

2 نویسنده مسئول، گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. رایانامه: fa.zaefarian@sanru.ac.ir

3 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری ایران. رایانامه: r.hasanpour@stu.sanru.ac.ir

4 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. رایانامه: h.pirdashti@sanru.ac.ir

چکیده

به‌منظور ارزیابی توانایی گیاه سورگوم علوفه‏ای (Sorghum bicolor L.) در حذف فلز سنگین کادمیم به کمک بیوچار (زغال زیستی) و باکتری سودوموناس پوتیدا (Pseudomonas putida) آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار در تابستان سال 1398 در دانشگاه علوم کشاورزی و منابع طبیعی ساری، در شرایط گلخانه انجام شد. نتایج نشان داد که حضور کادمیم در بستر کشت گیاه سورگوم موجب کاهش وزن خشک ریشه و شاخساره شد. اما افزودن بیوچار و تلقیح سودوموناس پوتیدا به‌طور معنی‏داری موجب افزایش صفات مذکور شد. فاکتور تجمع زیستی ریشه و شاخساره از غلظت 25 تا 100 میلی‏گرم کادمیم در کیلوگرم خاک روند افزایشی داشت، به‌طوری‌که بیش‌ترین فاکتور تجمع زیستی شاخساره (31/2) در غلظت 100 میلی‏گرم کادمیم در کیلوگرم خاک و در تیمار کاربرد هم‏زمان بیوچار و سودوموناس پوتیدا مشاهده شد که نسبت به شاهد 33/28 درصد افزایش معنی‏داری داشته است. هم‌چنین، کمینه فاکتور انتقال گیاه سورگوم (000/1) مربوط به تیمار عدم مصرف بیوچار، عدم تلقیح سودوموناس پوتیدا و بدون آلودگی کادمیم بود که نسبت به شاهد 20 درصد کاهش یافت؛ حال آن‌که بیشینه فاکتور انتقال (94/1) در غلظت 25 میلی‏گرم کادمیم در کیلوگرم خاک و تیمار عدم مصرف بیوچار و عدم تلقیح سودوموناس پوتیدا مشاهده شد. شاخص تحمل گیاه با افزایش غلظت کادمیم کاهش یافت، درحالی‏که استفاده از بیوچار و تلقیح باکتری سودوموناس پوتیدا موجب افزایش این شاخص شد، به‌طوری‏که بیش‌ترین شاخص تحمل (22/1) مربوط به تیمار کاربرد تلفیقی بیوچار و باکتری بدون استفاده از کادمیم بود که نسبت به عدم مصرف بیوچار و عدم تلقیح باکتری 22 درصد افزایش یافت. از آنجاکه شاخص تحمل گیاه سورگوم علوفه‏ای در همه غلظت‏های کادمیم بیش‌تر از 60/0 بود، لذا می‏توان این گیاه را در گروه تحمل بالا نسبت به تنش فلز سنگین کادمیم دسته‌بندی کرد و از سورگوم جهت گیاه‌پالایی کادمیم بهره جست.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Ability of Forage Sorghum Plant to Remove Cadmium with Biochar and Plant Growth-Promoting Bacteria

نویسندگان [English]

  • Fatemeh Delavarnia 1
  • Faezeh Zaefarian 2
  • roghayeh hasanpour 3
  • Hemmatollah Pirdashti 4

1 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and ‎Natural Resources University, Sari, Iran.‎ E-mail: f.delavarnia@sanru.ac.ir

2 Corresponding Author, Department‎‏ ‏of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and ‎Natural Resources University, Sari, Iran.‎ E-mail: fa.zaefarian@sanru.ac.ir

3 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences ‎and Natural Resources University, Sari, Iran.‎ E-mail: r.hasanpour@stu.sanru.ac.ir

4 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences ‎and Natural Resources University, Sari, Iran.‎ E-mail: h.pirdashti@sanru.ac.ir

چکیده [English]

In order to evaluate the ability of forage sorghum (Sorghum bicolor L.) to remediate the heavy metal cadmium with biochar and Pseudomonas putida, a factorial experiment has been conducted based on completely randomized design accomplished in greenhouse conditions with four replications at Sari Agricultural Sciences and Natural Resources University, in the summer of 2019. Results show that the presence of cadmium in the medium of sorghum reduce the dry weight of root and shoot. However, adding biochar and bacterial inoculation significantly increase the mentioned traits. Bioconcentration factor and bioaccumulation factor have increased from 25 to 100 mg of cadmium, when the highest shoot bioaccumulation factor (2.31) is observed at a concentration of 100 mg Cd per kg soil and in the simultaneous application of Biochar and Pseudomonas putida, which is a significant increase of 28.33% compared to the control. The lowest translocation factor of sorghum (1.000) is related to non-application of biochar, non-inoculation of Pseudomonas putida and without cadmium contamination, itslef reduced by 20% compared to the control, while the highest translocation factor (1.94) is observed at a concentration of 25 mg of cadmium per kg of soil and treatment of non-application of biochar and non-inoculation of Pseudomonas putida. Plant tolerance index has decreased by increasing cadmium concentration, while the use of biochar and inoculation of Pseudomonas putida has increased this index when the highest tolerance index (1.22) is related to the treatment of combined use of biochar and bacteria with no cadmium, increased by 22% compared to non-application of biochar and non-inoculation bacteria. As the tolerance index of forage sorghum in all concentrations of cadmium is more than 0.60, this plant can be classified in the highly-tolerant group to the heavy metal cadmium stress and sorghum could be used for cadmium phytoremediation.

کلیدواژه‌ها [English]

  • Dry weight
  • Heavy metal
  • Phytoremediation
  • Tolerance index
  • Translocation factor
Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22, 503-511. http://dx.doi.org/10.1016/j.sjbs.2014.12.003
Alzahrani, Y., Alharby, H. F., Hakeem, K. R., & Alsamadany, H. (2020). Modulating effect of EDTA and SDS on growth, biochemical parameters and antioxidant defense system of Dahlia variabilis grown under cadmium and lead-induced stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 906-923. http://doi.org/10.15835/nbha48211909
Amjad Khan, M., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 601-602, 1591-1605. http://dx.doi.org/10.1016/j.scitotenv.2017.06.030
Antoniadis, V., Levizou, E., Shaheen, S. M., Sik Ok, Y., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review. Earth-Science Reviews, 171, 621-645. http://dx.doi.org/10.1016/j.earscirev.2017.06.005
Aricak, B., Cetin, M., Erdem, R., Sevik, H., & Cometen, H. (2020). The usability of Scotch pine (Pinus sylvestris) as a biomonitor for traffic-originated heavy metal concentrations in Turkey. Polish Journal of Environmental Studies, 29(2), 1-7. http://doi.org/10.15244/pjoes/109244
Barghi, A., Gholipoori, A., Ghavidel, A., & Sedghi, M. (2020). Changes in seed oil yield and its components of black mustard (Brassica nigra L.) as affected by rhizobacteria and growth regulators under cadmium stress conditions. Journal of Crop Ecophysiology, 13(4), 555-570. (In Persian)
Biria, M., Moezzi, A. A., & AmeriKhah, H. (2017). Effect of sugarcane bagasse made biochar on maize plant growth, grown in lead and cadmium contaminated soil. Journal of Water and Soil, 31(2), 609-626. (In Persian)
Catav, S. S., Genc, T. O., Oktay, M. K., & Kucukakyuz, K. (2020). Cadmium toxicity in wheat: Impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bulletin of Environmental Contamination and Toxicology, 104, 71-77. https://doi.org/10.1007/s00128-019-02745-4
Cluis, C. (2004). Junk-greedy greens: phytoremediation as a new option for soil decontamination. Journal of Biotechnology, 2, 60-67. Retrieved from http://www.bioteach.ubc.ca
Ghorbani, M., Karimian, N. A., & Zarei, M. (2017). Influence of liquid organic fertilizer on growth, cadmium and macronutrients uptake of Spinach (Spinacea oleracea L.) in a cadmium polluted soil. Journal of Soil and Water Conservation, 42(3), 235-249. (In Persian)
Han, T., Zhao, Z., Bartlam, M., & Wang, Y. (2016). Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environmental Science and Pollution Research, 23, 21219-21228. http://doi.org/10.1007/s11356-016-7236-6
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855. https://doi.org/10.1016/j.envpol.2019.05.151
Herlina, L., Widianarko, B., & Sunoko H. R. (2020). Phytoremediation potential of Cordyline fruticosa for lead contaminated soil. Journal Pendidikan IPA Indonesia, 9(1), 42-49. http://journal.unnes.ac.id/index.php/jpii
Hesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T., & Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142-2159. https://doi.org/10.1111/1462-2920.14130
Hou, X., Teng, W., Hu, Y., Yang, Z., Li, C., Scullion, J., Guo, Q., & Zheng R. (2020). Potential phytoremediation of soil cadmium and zinc by diverse ornamental and energy grasses. BioResources, 15(1), 616-640. http://doi.org/10.15376/biores.15.1.616-640
Hussain, F., Hussain, I., Ali Khan, A. H., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan., & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80-88. https://doi.org/10.1016/j.envexpbot.2018.05.012
Kapur, D., & Singh, K. J. (2019). Zinc alleviates cadmium induced heavy metal stress by stimulating antioxidative defense in soybean [Glycine max (L.) Merr.] crop. Journal of Applied and Natural Science, 11(2), 338-345. http://doi.org/10.31018/jans.v11i2.2054
Kaur, A., & Kumar, P. (2020). Effect of biofertilizers on the plant height and leaf area in Sorghum vulgare grown under lead toxic soil. Journal of Pharmacognosy and Phytochemistry, 9(4), 1707-1712. Retrieved from http://www.phytojournal.com
Khare, P., Dilshad, U., Rout, P. K., Yadav, V., & Jain, S. (2013). Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry, 10, 3054-3063. http://dx.doi.org/10.1016/j.arabjc.2013.11.047
Kos, B., Grcman, H., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant and Soil Environmental, 49, 548-553. https://doi.org/10.17221/4192-PSE
Kumar, A., Kumar, R., Kumari, M., & Goldar, S. (2020). Enhancement of plant growth by using PGPR for a sustainable agriculture: A review. International Journal of Current Microbiology and Applied Sciences, 9(2), 152-165. https://doi.org/10.20546/ijcmas.2020.902.019
Lux, A., Sottníkova, A., Opatrna, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Plant Physiology, 120, 537-545. http://doi.org/10.1111/j.0031-9317.2004.0275.x
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kenelly, E. D. (2001). A fern that hyper accumulates arsenic. Nature, 409, 579-582. https://doi.org/10.1038/35054664
Ma, Q. J., Sun, M. H., Lu, J., Hu, D. G., Kang, H., You, C. X., & Hao, Y. J. (2020). Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple. Journal of Experimental Botany, 71(12), 3437-3449. https://doi.org/10.1093/jxb/eraa121
Mohammed Ali, A. S., Ahmed, H. A. M., Emara, H. A.  E., Janjua, M. N., & Alhafez, N. (2019). Estimation and bio-availability of toxic metals between soils and plants. Polish Journal of Environmental Studies, 28(1), 15-24. http://doi.org10.15244/pjoes/81690
Motesharezadeh, B., & Savaghebi, GH. (2011). Study of sunflower plant response to cadmium and lead toxicity by usage of PGPR in a calcareous soil. Journal of Water and Soil, 25(5), 1069-1079. (In Persian)
Nazarian, H., Amouzgar, D., & Sedghianzadeh, H. (2016). Effects of different concentrations of cadmium on growth and morphological changes in basil (Ocimum basilicum L.). Pakistan Journal of Botany, 48(3), 945-952. https://doi.org/10.1016/j.indcrop.2019.111584
Piacentini, D., Ronzan, M., Fattorini, L., DellaRovere, F., Massimi, L., Altamura, M. M., & Falasca, G. (2020). Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 151, 729-742. https://doi.org/10.1016/j.plaphy.2020.04.004
Pidlisnyuk, V., Mamirova, A., Pranaw, K., Shapoval, P. Y., Trogl, J., & Nurzhanova, A. (2020). Potential role of plant growth-promoting bacteria in Miscanthus x giganteus phytotechnology applied to the trace elements contaminated soils. International Biodeterioration and Biodegradation, 155, 105103-105113. https://doi.org/10.1016/j.ibiod.2020.105103
Schuuck, M., & Greger, M. (2020). Plant traits related to the heavy metal removal capacities of wetland plants. International Journal of Phytoremediation, 22(4), 427-435. https://doi.org/10.1080/15226514.2019.1669529
Soltani Toolarood, A. S., Eivazi Nay, M., Ghavidel, A., Abbaszadeh Dehaji, P., & Goli Kalanpa, E. (2019). Isolation, screening and evaluation of plant growth stimulating traits of Cd and Pb resistant microorganisms. Applied Soil Research, 7(3), 111-123. (In Persian)
Tsuboi, K., Shehzad, T., Yoneda, J., Uraguchi, S., Ito, Y., Shinsei, L., Morita, S., Rai, H., Nagasawa, N., Asari, K., Suzuki, H., Itoh, R., Saito, T., Suzuki, K., Takano, I., Takahashi, H., Sakurai, K., Watanabe, A., Akagi, H., Tokunaga, T., Itoh, M., Hattori, H., Fujiwara, T., Okuno, K., Tsutsumi, N., & Satoh-Nagasawa, N. (2017). Genetic analysis of cadmium accumulation in shoots of sorghum landraces. Crop Science, 57(1), 22-31. https://doi.org/10.2135/cropsci2016.01.0069
Ur Rahman, S. H., Qi, X., Zhang, Z., Ashraf, M. N., Du, Z., Zhong, Y. L., Mehmood, F., Ur Rahman, S., & Shehzad, M. (2020). The effect of silicon foliar and root application on growth, physiology, and antioxidant enzyme activity of wheat plants under cadmium toxicity. Applied Ecology and Environmental Research, 18(2), 3349-3371. http://dx.doi.org/10.15666/aeer/1802_33493371
Valizadeh Ghale Beig, A., Nemati, S. H., Emami, H., & Aroie, H. (2020). The effect of cutflower-rose waste biochar on morphological traits and heavy metals in lettuce (Lactuca sativa L. cv. Syaho). Science and Technology of Greenhouse Culture, 10(4), 21-35. (In Persian) 
Volke, D.C., Calero, P., & Nikel, P. I. (2020). Pseudomonas putida. Trends in Microbiology, 28(16), 512-513. https://doi.org/10.1016/j.tim.2020.02.015
Wu, J., Kamal, N., Hao, H., Qian, C., Liu, Z., Shao, Y., Zhong, X., & Xu, B. (2019). Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in hybrid Pennisetum. Biotechnology Reports, 24, 374-382. https://doi.org/10.1016/j.btre.2019.e00374
Zhang, W. H., Cai, Y., Tu, C., & Ma, Q. L. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Environmental Science, 300, 167-177. https://doi.org/10.1016/S0048-9697(02)00165-1