نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.‏ رایانامه: r.abasi@sanru.ac.ir

2 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران‏. رایانامه: m.namdari.stu@sanru.ac.ir‎

چکیده

به­منظور مطالعه رقابت گیاه سویا و کنجد در نسبت­های مختلف کشت مخلوط به­روش جایگزینی، آزمایشی به­صورت طرح بلوک­های کامل تصادفی با چهار تکرار در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی ساری در سال زراعی 98-1397 اجرا شد. تیمارهای آزمایش شامل نسبت­های کاشت 0:100، 25:75، 50:50، 75:25 و 100:0 (به­ترتیب کنجد- سویا) بودند. نتایج نشان داد نسبت­های مختلف کاشت اثر معنی‌داری بر درصد نیتروژن حاصل از تثبیت بیولوژیکی و کارایی مصرف نور دارد. در بین نسبت­های مختلف کاشت بیش‌ترین مقدار تثبیت بیولوژیکی نیتروژن مربوط به مرحله 90 روز پس از کاشت بود و نسبت کاشت 75:25 و 25:75 به­ترتیب با میانگین 59/75 و 67/42 درصد دارای بیش‌ترین و کم‌ترین میزان فعالیت بودند. علاوه بر مطالب مذکور بیش‌ترین برآیند کارایی مصرف نور در کشت مخلوط مربوط به مرحله 120 روز پس از کاشت بود. در این مرحله برآیند کارایی مصرف نور در نسبت‌های کشت 75:25 و 50:50 به­ترتیب 03/2 و 92/1 گرم بر مگاژول در روز بود. بیش‌ترین نسبت برابری زمین نیز متعلق به نسبت کاشت 50:50 (کنجد- سویا) با میانگین 12/1 بود. در نهایت افزایش کارایی مصرف نور در نسبت کاشت 75:25 و 50:50 نقش مهمی در افزایش قابلیت تثبیت بیولوژیکی گیاه سویا و بهبود کارایی کشت مخلوط داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Light Use Efficiency and Nitrogen Derived from the Atmosphere in intercropped of Soybean and Sesame

نویسندگان [English]

  • Rahmat Abasi 1
  • Meisam Namdari 2

1 Corresponding Author, Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural sciences and Natural Resources ‎University, Sari, Iran‎. E-mail: r.abasi@sanru.ac.ir

2 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural sciences and Natural Resources ‎University, Sari, Iran. E-mail: m.namdari.stu@sanru.ac.ir

چکیده [English]

A field experiment has been carried out to study the competition between soybean and sesame in different planting ratios of intercropping based on replacement method. It is based on a randomized complete block design with four replications at Sari Agricultural Science and Natural Resources University during 2019. The planting ratios are 0:100, 25:75, 50:50, 75:25, and 100:0 (Soybean: Sesame respectively), using replacement method. Results show that intercropping has had a significant effect on the percentage of N derived from the atmosphere and light use efficiency. Among the different planting ratios, the maximum amount of biological nitrogen fixation is related to the 90-days after planting, and the 75:25 and 25:75 planting ratios have had the highest (75.95%) and lowest activity rates (42.67%), respectively. In addition, the highest light use efficiency in intercropping is related to the 120-days after planting. At this stage, the light use efficiency in 75:25 and 50:50 ratios are 2.03 and 1.92 g.MJ.-1, respectively. The highest land equivalent ratio is 50:50, with an average of 1.12. Finally, increasing the light use efficiency in planting ratios of 75:25 and 50:50 prove to be essential in increasing soybean's biological nitrogen fixation and increasing the efficiency of intercropping cultivation.

کلیدواژه‌ها [English]

  • Growth stage
  • Land equivalent ratio
  • Planting ratio
  • Replacement method
Akbari, F., Dahmardeh, M., Morshdi, A., Ghanbari, A., & Khoramdel, S. (2019). Effects of Tillage System and Plant Residue on Nitrogen Uptake and Use Efficiency in Corn and Bean Intercropping Systems. Journal of Crops Improvement, 20(4), 785-799. (in Persian) https://doi.org/10.22059/JCI.2018.259464.2043
Ambas, V., & Baltas, E. (2014). Spectral analysis of hourly solar radiation. Environmental Process, 1, 251-263. https://doi.org/10.1007/s40710-014-0023-9
Cataldo, D.A., Haroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6, 71-80. https://doi.org/10.1080/00103627509366547
Cong, W.F., Hoffland, E., Li, L., Six, J., Haosun, J., Bao, X., Zhang, F., & Werf, W. (2014). Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21(4), 1715-1726. https://doi.org/10.1111/gcb.12738
Fatemi devin, R., Bager Hoseini, S.M., Mogadam, H., & Motasharezadeh, B. (2021). Evaluation of light consumption efficiency in a mixture of maize and beans cultivation under the influence of biologic and organic fertilizers. Journal of Crops Improvement, Articles in press. (in Persian) https://doi.org/10.22059/JCI.2021.308259.2452
Gardner, F.P., Pearce, R.B., & Mitchell, R.L. (1985). Physiology of crop plants. USA, Iowa State University Press.
Gong, X., Ferdinand, U., Dang, K., Li, J., Chen, G., Luo, Y., Yang, P., & Feng, B. (2020). Boosting proso millet yield by altering canopy light distribution in proso millet/mung bean intercropping systems. The Crop Journal, 8(2), 365-377. https://doi.org/10.1016/j.cj.2019.09.009
Herridge, D.F. (1984). Effects of nitrate and plant development on the abundance of nitrogenous solutes in root-bleeding and vacuum extracted exudates of soybean. Crop Science, 25, 173-179. https://doi.org/10.2135/cropsci1984.0011183X002400010041x
Hosseinpanahi, F., Pouramir, F., Kocheki, A., Nassiri, M., & Ghrbani, R. (2011). Evaluation of radiation absorption and use efficiency in replacement series intercropping of chickpea (Cicer arietinum L.) and sesame (Sesamum indicum L.). Agroecology Journal. 3(1), 106-120. (in Persian)
Hu, F., Gan, Y., Chai, Q., Feng, F., Zhao, C., Yu, A., Mu, Y., & Zhang, Y. (2016). Boosting system productivity through the improved coordination of interspecific competition in maize-pea strip intercropping. Field Crop Research, 198, 50-60. https://doi.org/10.1016/j.fcr.2016.08.022
Imtiyaz, H., Singh, N.B., Singh, A., & Singh, H. (2017). Allelopathic potential of sesame plant leachate against Cyperus rotundus L. Annals of Agrarian Science, 15, 141-147. http://dx.doi.org/10.1016/j.aasci.2016.10.003
Janbazghobadi, G. (2018). Calibration and Validation of the Estimate of the radiation rates of the sun and its zoning of meteorological station data of mazandaran province. Geography, 8(1), 237-249. (in Persian)
Khalid, M.H.B., Reza, M.A., Yu, H.Q., Sum, F.A., Zhang, Y.Y., Iqbal, N., Fu, F.L., & Li, W.C. (2018). Effect of shade treatments on morphology, photosynthetic and chlorophyll flurescence characteristics of soybeans (Glycine max L. merr.). Applied Ecology and Environmental Research, 17(2), 2551-2569. https://doi.org/10.15666/aeer/1702_25512569
Kumar, P.A., Parry, M.A.J., Mitchell, R.A.C., Ahmad, A., & Abrol, Y.P. (2002). Photosynthesis and nitrogen use efficiency. In C.H. Foyer & G. Noctor (Eds.), Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism (1th ed., Vol. 12, pp. 23-34). Dordrecht, NL: Kluwar Academic Publishers.
Luca, M.J.D., & Hungria, M. (2014). Plant densities and modulation of symbiotic nitrogen fixation in soybean. Scientia Agricola, 71(3), 181-187. http://dx.doi.org/10.1590/S0103-90162014000300002
Lunagaria, M.M., & Shekh, A.M. (2006). Radiation interception, light extinction coefficient and leaf area index of wheat (Triticum aestivum L.) crop as influenced by row orientation and row spacing. Agricultural Sciences, 2(2), 43-54.
Machado, S. (2009). Does intercropping have a role in modern agriculture? Soil and Water Conservation, 64(2), 55-57.
Mead, R., & Willey, R.W. (1980). The concept of a land equivalent ratio and advantages in yields for intercropping. Experimental Agriculture, 16, 217-228. https://doi.org/10.1017/S0014479700010978
Namatsheve, T., Chikowo, R., Corbeels, M., Mouquet, M., Verniere, C.I., & Cardinal, R. (2021). Maize-cowpea intercropping as an ecological intensification option for low input systems in sub-humid Zimbabwe: Productivity, biological N2-fixation and grain mineral content. Field Crops Research, 263(1), 35-24. https://doi.org/10.1016/j.fcr.2020.108052
Oluwaseyi, S.O., Ayangbenro, A.S., Glick, B.R., & Babalola, O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology 103,1155-1166. https://doi.org/10.1007/s00253-018-9556-6
Parsa, S., Koocheki, A., Nassiri Mahallati, M., & Ghaemi, A. (2008). Seasonal variation of radiation interception and radiation use efficiency in sugar beet (Beta vulgaris L.). Field Crops Research, 5(2), 229–238. (in Persian)
Raza, M.A., Feng, L., Werf, W.V., Ren Cai, G., Khalid, M.H., Igbal, N., Hassan, M., Meraj, T.A., Naeem, M., Khan, I., Rehman, S., Ansar, M., Ahmad, M., Yang, F., & Yang, W. (2019). Narrow‐wide‐row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay‐intercropping system. Food and Energy Security, 8(3), 1-12. https://doi.org/10.1002/fes3.170
Soltani, A., & Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103, 198-207. https://doi.org/10.1016/j.fcr.2007.06.003
Stomph, T., Dordas, C., Baranger, A., de Rijk, J., Dong, B., Evers, J., Gu, C., Li, L., Simon, J., Jensen, E.S., Wang, Q., Wang, Y., Wang, Z., Xu, H., Zhang, C., Zhang, L., Zhang, W., Bedoussac, L., & Werf, W.V. (2020). Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? In: D.L. Sparks (Ed.), Advances in Agronomy (1st  Ed., 160, 1-50). London, UK. Academic Press.
Trezzi, M.M., Vidal, R.A., Balbinot, A.A., Bittencourt, H.V.H., & Filho, A.P.S. (2016). Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1), 53-60. https://doi.org/10.1080/17429145.2016.1159342
Tsubo, M., & Walker, S. (2002). A model of radiation interception and use by a maize-bean intercrop canopy. Agricultural and Forest Meteorology. 110, 203–215. https://doi.org/10.1016/S0168-1923(01)00287-8
Unkovich, M., Herridge, D.F., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B., & Chalk, P. (2008). Measuring plant-associated nitrogen fixation in agricultural systems. Canberra, AU: ACIAR Press.
Verma, P., Blaise, D., Sheeba, J.A., & Manikandan, A. (2021). Allelopathic potential and allelochemicals in different intercrops for weed management in rainfed cotton. Current Science, 120(6), 1035-1039. https://doi.org/10.18520/cs%2Fv120%2Fi6%2F1035-1039
Vlachostergios, D.N., Dordas, C.A., & Lithourgidis, A.S. (2015). Forage yield, protein concentration and interspecific competition in red pea-cereal intercrops. Experimental Agriculture, 51(4), 635-650. https://doi.org/10.1017/S0014479714000519
Wang, Z., Zhao, X., Wu, P., He, J., Chen, X., Gao, Y., & Cao, X. (2015). Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 204, 58-66. https://doi.org/10.1016/j.agrformet.2015.02.004
Willey, R.W., & Rao, M.R. (1980). A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 16, 117-125. https://doi.org/10.1017/S0014479700010802
Young, E.G., & Conway, C.F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry, 142, 839-853.
Zhang, L.Z., Werf, W.V., Bastiaans, L., Zhang, S., Li, B., & Spiertz, J.H.J. (2008). Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 107(1), 29-42. https://doi.org/10.1016/j.fcr.2007.12.014