نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه علوم و مهندسی باغبانی و فضای سبز، دانشگاه سیدجمال الدین اسدآبادی، اسدآباد، ایران. رایانامه: rasouli@sjau.ac.ir

2 گروه علوم و مهندسی باغبانی و فضای سبز، دانشگاه سیدجمال الدین اسدآبادی، اسدآباد، ایران. رایانامه: noroozi2ar@yahoo.com

چکیده

کاربرد ترکیب­هایی که بتواند تحمل گیاهان را به تنش­های محیطی از جمله شوری افزایش دهد دارای اهمیت است. برای ارزیابی تعدیل تنش شوری با استفاده از هیومیک‌اسید آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار روی گیاه دارویی گل‌راعی بومی ایران توده همدان (Hypericum perforatum L.) در آزمایشگاه کشت بافت دانشکده کشاورزی دانشگاه سیدجمال الدین اسدآبادی در سال 1398 اجرا شد. تیمارهای آزمایشی شامل سه سطح شوری (صفر، 50  و 100 میلی‌مول بر لیتر) نمک کلریدسدیمکلریدسدیم و چهار سطح هیومیک‌اسید (صفر، 25، 50، 100 میلی­گرم بر لیتر) بود. بیش‌ترین درصد (65/98 درصد) و سرعت جوانه­زنی (94/38) و طول ریشه (21/34 میلی‌متر) در تیمار 50 میلی­مول بر لیتر هیومیک‌اسید و بدون شوری به‌دست آمد. بیش‌ترین ارتفاع گیاه، وزن تر و خشک اندام هوایی، وزن تر و خشک ریشه و کلروفیل کل مربوط به شرایط بدون تنش و هیومیک‌اسید با غلظت 100 میلی­مول بر لیتر بود. بیش‌ترین مقدار فنل در تیمار شوری 50 میلی­مولار و هیومیک‌اسید با غلظت 50 میلی­گرم بر لیتر بود. بیش‌ترین میزان آنتی‌اکسیدان (77/99 میلی‌گرم بر گرم) و فلاونوئید کل (39/2 میلی‌گرم بر گرم) و کم‌ترین میزان پراکسیدهیدروژن (12/9 میکروگرم بر گرم) در تیمار شوری 100 میلی­مولار و هیومیک‌اسید با غلظت 50 میلی­گرم بر لیتر به­دست آمد. نتایج پژوهش نشان داد اثر تعدیل‌کننده به­ویژه کاربرد سطوح 50 میلی‌گرم بر لیتر هیومیک‌اسید می­تواند بر فرایندهای فیزیولوژیک و صفات رویشی گیاه گل‌راعی تحت تنش شوری اثرگذار باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of Humic Acid and Salinity Stress on Some Germination and Morpho-physiological Indices of Iranian St Johns Wort in in Vitro Conditions

نویسندگان [English]

  • Mehrdad Rasouli 1
  • Alireza Noroozisharaf 2

1 Corresponding Author, Department of Horticultural Science, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran. E-mail: rasouli@sjau.ac.ir

2 Department of Horticultural Science, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran. E-mail: noroozi2ar@yahoo.com

چکیده [English]

The use of compounds that can improve plant tolerance to abiotic environmental stress, including salinity, is important. To evaluate the adjustment of salinity stress using humic acid (HA), a factorial layout is conducted based on a complete randomized design with three replications on the Hypericum perforatum L. as an Iranian medicinal plant are collected from Hamadan province in the tissue culture laboratory of the Faculty of Agriculture, Sayyed Jamaleddin Asadabadi University during 2019. Experimental treatments include NaCl as salinity at three levels (such as 0, 50, and 100 mmol.L-1) and HA at four levels (control, 25, 50, and 100 mg.L-1). Results indicate that the plants treated with 50 mg.L-1 HA without salinity have had the highest germination percentage (98.65), germination rate (38.94) and root length (34.21 mm). The highest plant height, fresh and dry weight of both shoots and roots and total chlorophyll are obtained under control conditions and HA with a concentration of 100 mg.L-1. On the contrary, the highest amount of phenol in the treatment is 50 mmol.L-1 salinity and HA with a concentration of 50 mg.L-1. In the treatment of 100 mmol.L-1 salinity and HA with a concentration of 50 mg.L-1, the highest amount of total antioxidants (99.77 mg/g FW) and total flavonoids (2.39 mg/Qe g FW) and the lowest amount of hydrogen peroxide (9.12 µg/g FW) are obtained. Results show that the mitigating effect, especially the application of HA of 50 mg.L-1 levels, can affect the physiological processes and morphological traits of the Hypericum perforatum L. under salinity stress.

کلیدواژه‌ها [English]

  • Flavonoids
  • Germination percentage
  • Organic matter
  • Peroxidase
  • Tissue culture
Ábrahám, E. (2011). Identification of arabidopsis and thellungiella genes involved in salt tolerance by novel genetic system. Acta Biologica Szegediensis, 55(1), 53-57.
Akladious, S. A., & Mohamed, H. I. (2018). Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 236, 244-250.
Al-Amier, H., & Craker, L. E. (2007). In vitro selection for stress tolerant spearmint. Issues in New Crops and New Uses, 306-310.
Albayrak, S., & Camas, N. (2005). Effects of different levels and application times of humic acid on root and leaf yield and yield components of forage turnip (Brassica rapa L.). Journal of Agronomy, 4(2), 130-133.
Alinian Joozdani, S., Rafieiolhossaini, M., Razmjoo, J., & Bahreininejad, B. (2021). Physiological mechanism involved in st. John's wort (Hypericum perferatum L.) response to salinity and effect of ascorbic acid foliar application. Environmental Stresses in Crop Sciences, 14(2), 529-543.
Behboudian, B., Lahouti, M., & Nezami, A. (2006). Effects of salt stress on germination of chickpeas cultivars. Seed Reseach Gorgania,  9(3), 254-269.
Bilia, A. R., Gallori, S., & Vincieri, F. F. (2002). St. John's wort and depression: Efficacy, safety and tolerability-an update. Life Sciences, 70(26), 3077-3096.
Borromand, R. Z., & Koocheki, A. (2006). Germination response of ajowan, fennel and dill to osmotic potential of sodium chloride and polyethylene glycol 6000 in different temperature regimes. Iranian Journal of Field Crops Research, 3(2), 207-217.
Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food & Drug Analysis, 10(3), 213-218.
Crockett, S. L. (2010). Essential oil and volatile components of the genus hypericum (hypericaceae). Natural Product Communications, 5(9), 1934578X1000500926.
Debez, A., Hamed, K. B., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth, and seed production of the halophyte cakile maritima. Plant and Soil, 262(1-2), 179-189.
El-Nemr, M., El-Desuki, M., El-Bassiony, A., & Fawzy, Z. (2012). Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Australian Journal of Basic and Applied Sciences, 6(3), 630-637.
Elmaghrabi, A. M., Rogers, H. J., Francis, D., & Ochatt, S. (2018). Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in medicago truncatula. Functional Genomics in Medicago Truncatula, 291-314.
Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology, 99(10), 4206-4212.
Fan, H. m., Wang, X. w., Sun, X., Li, Y. y., Sun, X. z., & Zheng, C. s. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177. 118-123.
Fritz, C., Palacios‐Rojas, N., Feil, R., & Stitt, M. (2006). Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: Nitrate inhibits large sectors of phenylpropanoid metabolism. The Plant Journal, 46(4), 533-548.
Galla, G., Basso, A., Grisan, S., Bellucci, M., Pupilli, F., & Barcaccia, G. (2019). Ovule gene expression analysis in sexual and aposporous apomictic Hypericum perforatum L. (hypericaceae) accessions. Frontiers in Plant Science, 10, 654.
García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative stress and antioxidant defense in plants under salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants, 291-309.
Ghanbarpour, E., Rezaei, M., & Lawson, S. (2019). Reduction of cracking in pomegranate fruit after foliar application of humic acid, calcium-boron and kaolin during water stress. Erwerbs-obstbau, 61(1), 29-37.
Hsuan, T.-P., Jhuang, P.-R., Wu, W.-C., & Lur, H.-S. (2019). Thermotolerance evaluation of taiwan japonica type rice cultivars at the seedling stage. Botanical Studies, 60(1), 29.
Jindo, K., Martim, S. A., Navarro, E. C., Pérez-Alfocea, F., Hernandez, T., Garcia, C., Aguiar, N. O., & Canellas, L. P. (2012). Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil, 353(1-2), 209-220.
Kaboli Farshchi, H., Azizi, M., Nemati, H., & Roshan-Sarvestani, V. (2016). Effect of potassium sulphate and humic acid on growth, yield and essential oil content in Hypericum perforatum L. Journal of Horticultural Science, 29(4), 518-527.
Karakurt, Y., Unlu, H., Unlu, H., & Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(3), 233-237.
Karppinen, K., Taulavuori, E., & Hohtola, A. (2010). Optimization of protein extraction from hypericum perforatum tissues and immunoblotting detection of hyp-1 at different stages of leaf development. Molecular Biotechnology, 46(3), 219-226.
Kaur, A., Ohri, P., & Kaur, A. (2018).  Effect of vermicompost extracts on in-vitro germination and growth of Withania somnifera (L.) dunal. International Journal of Herbal Medicine, 6(2), 28-32.
Mereddy, R. (2015). Solid matrix priming improves seedling vigor of okra seeds. In: Proceedings of the Oklahoma Academy of Science. pp: 33-37.
Moon, J.-H., & Terao, J. (1998). Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. Journal of Agricultural and Food Chemistry, 46(12), 5062-5065.
Moradi, R., Afshari, H., Masoud Sinaki, J., & Zadeh Bagheri, M. (2014). Investigation effect of cultivar, planting date and humic acid on protein content, oil seed and chlorophyll content in (Ricinus communis L.). Journal of Plant Ecophysiology, 6(18), 80-90.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
Narimani, R., Moghaddam, M., Nemati, S., & Ghasemi, P. A. (2019). Evaluation of salinity adjusted by using humic acid and ascorbic acid in medicinal plant of moldavian balm (Dracocephalum moldavica L.). Journal of Plant Research (Iranian Journal of Biology.) 927-938.
Obroucheva, N., Sinkevich, I., Lityagina, S., & Novikova, G. (2017). Water relations in germinating seeds. Russian Journal of Plant Physiology, 64(4), 625-633.
Ouni, Y., Ghnaya, T., Montemurro, F., Abdelly, C., & Lakhdar, A. (2014). The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production, 8(3), 353-374.
Paksoy, M., Türkmen, Ö., & Dursun, A. (2010). Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. African Journal of Biotechnology, 9(33).
Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324-349.
Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research, 1-17.
Qader, R., Mohammad, M., Pouya, E., & Laden, A. (2019). Effect of humic acid foliar application on some morphophysiological and biochemical properties of green mint (Mentha spicata L.) under drought stress. Environmental Stresses in Crop Sciences, 12(1), 95-110.
Razavizadeh, R., & Mohagheghiyan, N. (2015). An investigation of changes in antioxidant enzymes activities and secondary metabolites of thyme (Thymus vulgaris) seedlings under in vitro salt stress. Iranian Journal of Plant Biology, 7(26), 41-58.
Rostami, G., Moghaddam, M., Saeedi Pooya, E., & Ajdanian, L. (2019). The effect of humic acid foliar application on some morphophysiological and biochemical characteristics of spearmint (Mentha spicata L.) in drought stress conditions. Environmental Stresses in Crop Sciences, 12(1), 95-110.
Rubio, V., Bustos, R., Irigoyen, M. L., Cardona-López, X., Rojas-Triana, M., & Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69(4), 361.
Sharma, A., Bhansali, S., & Kumar, A. (2013). In vitro callus induction and shoot regeneration in Eclipta alba (L.) hassk. International Journal of Life Science and Pharma Research, 3(2), 43-46.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Strain, H. H., & Svec, W. A. (1966). Extraction, separation, estimation and isolation of the chlorophylls. The Chlorophylls, 1, 22-66.
Tina, A., Pezhman, M., & Abbas, H. (2015). Effect of organic fertilizer and foliar application of humic acid on some quantitative and qualitative yield of pot marigold. Journal of Novel Applied Sciences, 4, 1100-1103.
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66.
Vishwanathan, A. (2018). Ethnobotany: A bridge between traditional knowledge and biotechnological studies on medicinal and aromatic plants. In: Biotechnological approaches for medicinal and aromatic plants. Springer: p. 383-394.
Waraich, E. A., Ahmad, R., & Ashraf, M. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764.
Zaremanesh, H., Eisvand, H., Akbari, N., Ismaili, A., & Feizian, M. (2019). Effects of different humic acid and salinity levels on some traits of khuzestani savory (Satureja khuzistanica jamzad). Applied Ecology and Environmental Research, 17(3), 5409-5433.
Zaremanesh, H., Eisvand, H. R., Akbari, N., Ismaili, A., & Feizian, M. (2021). Humic acid affects some growth parameters, chlorophyll, flavonoids, antioxidant enzymes and essential oil of Satureja khuzestanica jamzad under salinity stress. Iranian Journal of Plant Physiology, 11(3), 3683-3700.
Zhao, H., Liang, H., Chu, Y., Sun, C., Wei, N., Yang, M., & Zheng, C. (2019). Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. Seedlings. HortScience, 54(12), 2125-2133.