نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران.

چکیده

به‌منظور بررسی اثر عناصر نیتروژن، فسفر و پتاسیم بر پروفیل اسیدهای چرب، درصد روغن، عملکرد دانه و روغن گیاه کتان، رقم Lirina، آزمایشی در سال 1398 به‌صورت فاکتوریل در پایه طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی واقع در هشتگرد، استان البرز اجرا شد. تیمارهای مورد بررسی مقادیر نیتروژن خالص شامل 30، 60 و 90 کیلوگرم در هکتار از منبع اوره (46 درصد نیتروژن)، مقادیر فسفر خالص شامل ۴۰، 80 و 120 کیلوگرم در هکتار از منبع سوپر فسفات تریپل (46 درصد فسفر) و مقادیر پتاسیم خالص 40، 80 و 120 کیلوگرم در هکتار از منبع سولفات پتاسیم (۵۰ درصد پتاسیم) بود. نتایج نشان داد بیش‌ترین مقدار اسید لینولنیک (99/43 درصد) و اسید لینولئیک (68/17 درصد) و اسید پالمتیک (02/6 درصد) با کاربرد 30 کیلوگرم در هکتار کود نیتروژن و 40 کیلوگرم در هکتار کود فسفر حاصل شد. بیش‌ترین مقدار اسید اولئیک (49/27 درصد) و اسید استئاریک (25/5 درصد) با مصرف 30 کیلوگرم در هکتار کود نیتروژن به‌دست آمد. بالاترین عملکرد دانه در هکتار (28/2384 کیلوگرم در هکتار) و عملکرد روغن (19/939) به‌ترتیب با مصرف 90، 120 کیلوگرم در هکتارنیتروژن و فسفر حاصل شد. البته این ترکیب کودی اختلاف معنی‌دار آماری با ترکیب کودی 90 و 80 کیلوگرم در هکتار نیتروژن و فسفر نشان نداد. هم‌چنین براساس نتایج حاصل از این پژوهش درصد روغن تحت تأثیر مقادیر کودی قرار نگرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Influence of Different Levels of Nitrogen, Phosphorus, and Potassium on the Profiles of Fatty Acids, Oil Content, and Yield of Flax

نویسنده [English]

  • Kamal Sadat Asilan

Associate Professor, Department of Agriculture, Payame Noor University, Tehran, Iran.

چکیده [English]

In order to investigate the effect of nitrogen, phosphorus, and potassium elements on fatty acid profiles, oil percentage, grain yield, and flax seed oil, Lirina cultivar, a factorial experiment has been conducted during 2019, based on a randomized complete block design with three replications in Hashtgerd research farm, Alborz Province.  It has employed a factorial arrangement in a randomized complete block design with three replications with the factors involving three levels of nitrogen fertilizers (N1=30, N2=60, and N3=90 Kgha-1, three levels of phosphorus fertilizers (P1=40, P2=80, and P3=120 Kg.ha-1), and three levels of potassium fertilizers (K1=40, K2=80, and K3=120 Kg.ha-1). Result show that the highest amount of linolenic acid (43.99%), linoleic acid (17.68%), and palmitic acid (6.02%) have occurred in 30 kg. ha-1 nitrogen and 40 kg.ha-1 phosphorus. The highest amount of oleic acid (27.49%) and stearic acid (5.25%) belong to 30 kg.ha-1 phosphorus. Based on the results, the highest amount of grain yield (2384 kg.ha-1) and oil yield (939 kg.ha-1) are recorded in 90 and 120 kg.ha-1 nitrogen and phosphorus, respectively. Therefore, according to the results, different levels of fertilizer on percentage of oil has had no significant effect.

کلیدواژه‌ها [English]

  • Fertilizer levels
  • Linoleic acid
  • Plant nutrition
  • oilseeds
  • oil yield
Akram Othman, E., Yasin, H., & Mahmood, B. (2014). Effect of levels of phosphorus and iron on growth, yield and quality of flax. Journal of Agriculture and Veterinary Science, 7 (5), 7-11. doi: 10.9790/2380-07520711.
Alori, E. T., Glick, B. T., & Babalola, O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8 (2), 10-18. doi.org/10.3389/fmicb.2017.00971.
Aman, R., Ebtihal, A. E., & Mervat, S. (2019). Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bulletin of the National Research Centre, 43 (118), 1-12. DOI:10.1186/s42269-019-0156-0.
Bading, H. T. & De-Jong, C. (1983). Capillary GC of fatty acid methyl esters. A study of condition for the quantitative analysis of short- and long-chain fatty acids in lipids. Journal of chromate, 270, 493-506.
Borges B., Strauss, M. M. N., Camelo, M., Sohi, P., & Franco, C. (2020). Re-use of sugarcane residue as a novel biochar fertiliser - Increased phosphorus use efficiency and plant yield. Journal of Cleaner Productio, 262, 121406. doi:10.1016/j.jclepro.2020.121406.
Dong; L., Zhengjun; C., Bin; Y., Yuhong; G., Bin; W., Wenzhen, L., & Junyi, N. (2020). Effect of nitrogen and phosphorus application on soil nitrogen morphological characteristics and grain yield of oil flax. Oil Crop Science, 5 (2), 29-35. doi:10.1016/j.ocsci.2020.05.002.
Duan, X., Jin, K., Ding, G., Wang, C., Cai, H., Wang, S., & Shi, L., (2020). The impact of different morphological and biochemical root traits on phosphorus acquisition and seed yield of Brassica napus. Field Crops Research, 258, 10-22. doi:10.1016/j.fcr.2020.107960
Goksoy, A. T. A. O., Demir, Z. M. T., & Dagustu, N. (2004). Responses of sunflower to full and limited irrigation at different growth stage. Field crops Research, 87, 167-178.
Heckadka, S., Nayak, S., Yeshwan, S., Thomas, J., Jacob, Z. N., Sonia, G., Anil, K., & Marta, M. (2020). Comparative evaluation of chemical treatment on the physical and mechanical properties of Areca Frond, Banana, and Flax Fibers. Journal of Natural Fibers, 3, 1-13. doi:10.1080/15440478.2020.
Heshmati, S., Amini Dehaghi, M., & Fathi Amirkhiz, F. (2016). Effect of chemical and biological phosphorus on antioxidant enzymes activity and some biochemical traits of spring Safflower (Carthamus tinctorius L.) under water deficit stress conditions. Journal of Crop Production and Processing, 6 (19), 203-214. DOI: 10.18869/acadpub.jcpp.6.19.203.
Kyi; M., Seinn Moh; M., Aung Zaw; H., Yoshinori, K., & Takeo, Y. (2019). Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Science, 26 (5), 309-318. doi.org/10.1016/j.rsci.2019.08.005.
Leilah, A.A, Ghonema, M. H., Kineber, M. E., & Talha, I. H. M., (2018). Effect of nitrogen and phosphorus fertilizers levels on yields and technological characters of three Flax cultivars under saline soil conditions. International Journal of Plant Production, 9 (8), 689-693. 10.21608/JPP.2018.36394.
Nayak, S., Heckadka, S., Seth, S., Prabhu, A., Sharma, S., Shenoy, R., & Rajath, K. (2020). Effect of chemical treatment on the physical and mechanical properties of flax fibers: A comparative assessment. Materials Today: Proceedings, 12, 1-5. doi:10.1016/j.matpr.2020.07.380.
Ortiz, R., Geleta, M., Gustafsson, C., Lager, I., Hofvander, P., Lofsted, C., Cahoon, E., Minina, E., Bozhkov, P., & Stymne, S. (2020). Oil crops for the future. Current Opinion in Plant Biology, 56 (2), 181-189. doi.org/10.1016/j.pbi.2019.12.003.
Rajabi Khamseh, S., & Danesh Shahraki, A. (2020). Effect of bacterial inoculation on grain and soil nutrient elements of linseed (Linum usitatissimum L.) under different irrigation levels. Plant Production Research, 26 (4), 191-207. (In Persian).
Rastgoo, B., Abedi, A., & Parmoon, G. (2016). Investigation the effect of using nitrogen on yield and storage compositions of Safflower grain (Carthamus tinctorius L.).Crop Physiology Journal, 6 (21), 85-103. (In Persian).
Raziei, Z., Kahrizi, D., & Rostam, A. H. (2018). Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 64 (5), 91-96. doi: 10.1371/journal.pone.0159934.
Ricciardi, M.R., Papa, I., Lopresto, V., Langella, A., & Antonucci, A. (2019). Effect of hybridization on the impact properties of flax/basalt epoxy composites: influence of the stacking sequence, Composite Structures, 214 (2), 476-485. doi:10.1016/j.compstruct.2019.01.087.
Sepahvand, S.H., Koochekzadeh, A., Moshatati, A., & Siahpoosh, A. (2019). The effect of nitrogen levels and plant density on grain and oil yield of flax (Linum usitatissimum L.) in Ahwaz, South-west of Iran. Journal of Crop Production and Processing, 9 (4), 203-215. . (In Persian).
Shaker, A., AL-Baddrani, W., & Mohammed, S.A. (2014). Effect of potassium and boron on growth and yield of flax (Linum usitatissimum L.). Tikrit Journal for Agricultural Sciences. 14 (2), 7-20. doi.org/10.25130/tjas.v14i2.298.
Silska, G. (2017). Genetic resources of flax (Linum usitatissimum L.) as very rich source of α-linolenic acid. Herba Polonica, 63 (4), 26-33. doi.org/10.1515/hepo-2017-0022
Singh, D.; Soni, S.D., Sharma, S.L., Kumar, S., & Amit, L. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. doi:10.1016/j.fuel.2019.116553.
Taddese, G., & Tenaye, S. (2018). Effect of nitrogen on flax (Linumusit Atissimum L.) fiber yield at debre berhan area, Ethiopia. Forestry Research and Engineering, 2 (5), 284-289. doi. 10.15406/freij.2018.02.00061.
Wei, Chao-Khun., Zhi-Jing; N., Kiran; L., Ai-Mei; H., Ji-Hong, L., & Zhao-Jun, W. (2020). Aromatic effects of immobilized enzymatic oxidation of chicken fat on flaxseed (Linum usitatissimum L.) derived Maillard reaction products. Food Chemistry, 306, 125560. doi:10.1016/j.foodchem.
Yan, Bin.; W., Bing; Gao, W., Yuhong; W., Jianmin; N., Junyi; X., Yaping; C., Zhengjun, C., & Zhongkai, Z. (2018). Effects of nitrogen and phosphorus on the regulation of nonstructural carbohydrate accumulation, translocation and the yield formation of oilseed flax. Field Crops Research, 219 (15), 229-241. doi:10.1016/j.fcr.2018.01.032.
Yaping; X., Zhili; Y., Zaoxia; N., Jeffrey, C., Junyi; N., Wang, Z., Yan, B., Zhao, B., & Limin, W. (2020). Yield, oil content, and fatty acid profile of flax (Linum usitatissimum L.) as affected by phosphorus rate and seeding rate. Industrial Crops and Products, 145 (1), 112087. doi:10.1016/j.indcrop.2020.112087.
Zhang Q., Yuhong; Z., Bing, Y., Zhengjun, C., Bing, Y., Kun, W., & Jun, N. (2020). Perspective on oil flax yield and dry biomass with reduced nitrogen supply. Oil Crop Science, 5(2), 42-46. doi.org/10.1016/j.ocsci.2020.04.004.