نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه علوم زراعی و اصلاح نباتات، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، ایران.

2 دانشیار، گروه علوم زراعی و اصلاح نباتات، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران.

3 دانشیار، گروه علوم زراعی و اصلاح نباتات، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، ایران.

4 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی دانشگاه شاهد، تهران، ایران.

5 دانشجوی دکتری زراعت، گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران

6 دانش آموخته کارشناسی ارشد زراعت، گروه علوم زراعی و اصلاح نباتات، دانشکدگان ابوریحان، دانشگاه تهران، پاکدشت، تهران

چکیده

به منظور بررسی تأثیر محلول‌پاشی ملاتونین بر گیاهان  گلرنگ رشد یافته از بذور با کیفیت مختلف گلرنگ در شرایط تنش خشکی، دو آزمایش مزرعه‌ای طی سال‌های زراعی 96-1395 و 97-1396 در مزرعه پژوهشی پردیس ابوریحان دانشگاه تهران انجام گرفت. طرح آزمایشی به‌صورت اسپلیت-فاکتوریل در قالب طرح بلوک‏های کامل تصادفی با چهار تکرار انجام گرفت. عامل اصلی شامل  دو سطح تنش خشکی 1- بدون تنش  و 2- تنش (به‏ترتیب آبیاری پس از 50 و 85 درصد تخلیه رطوبت از ظرفیت زراعی خاک در مرحله گلدهی)  بود که در کرت‏های اصلی قرار گرفتند. کرت‏های فرعی، شامل چهار تیمار بودند که عبارت بودند از از کیفیت بذر (بذور انبارشده و بذور تازه برداشت‌شده) و محلول‌پاشی (1- شاهد و 2- محلول‌پاشی ملاتونین). نتایج این آزمایش نشان داد محلول‏پاشی ملاتونین عملکر دانه در بذور انبارشده را به مقدار 589 کیلوگرم در هکتار نسبت به تیمار محلول‏پاشی با آب (شاهد) افزایش داد. نتایج نشان داد که فعالیت آنزیم‌های سوپراکسیددیسموتاز و کاتالاز در گیاهان حاصل از بذور تازه برداشت‌شده در پاسخ به محلول‌پاشی ملاتونین در شرایط تنش خشکی افزایش یافت. هم‌چنین مشخص شد که در گیاهان حاصل از بذور تازه برداشت‌شده، محلول‏پاشی با ملاتونین، میزان پروتئین‏های محلول برگ را تا 28 درصد کاهش داد. نتایج مشخص کرد که در گیاهان حاصل از بذور انبارشده، محلول‌پاشی ملاتونین، میزان مالون‌دی‌آلدهید را در شرایط تنش خشکی، به میزان 37 درصد کاهش داد. به‌نظر می‏رسد کیفیت بذر مورداستفاده در ویژگی‌های گیاهان حاصل از آن بذرها تأثیر داشته باشد و هم‌چنین استفاده از ملاتونین در شرایط تنش خشکی، ممکن است نقش قابل‌توجهی در کاهش شدت آسیب حاصل از تنش روی گلرنگ داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Study the Antioxidant Enzymes’ Activity and Biochemical Responses of Safflower as Affected by Foliar Application of Melatonin under Drought Condition

نویسندگان [English]

  • Siavash Heshmati 1
  • Gholam Akbari 2
  • elias soltani 3
  • Majid Amini Dehaghi 4
  • Kayvan Fathi Amirkhiz 5
  • Keyvan Maleki 6

1 Former Ph.D. Student, Department of Agronomy and Plant Breeding Sciences, Aburaihan Campus, University of Tehran, Pakdasht, Iran.

2 Associate Professor, Department of Agronomy and Plant Breeding Sciences, Aburaihan Campus, University of Tehran, Pakdasht, Tehran, Iran.

3 Associate Professor, Department of Agronomy and Plant Breeding Sciences, Aburaihan Campus, University of Tehran, Pakdasht, Iran.

4 Associate Professor, Department of Agronomy and Plant Breeding, Favulty of Agricultural Sciences, Shahed University, Tehran, Iran.

5 Ph.D. candidate, Department of Agronomy and Plants Breeding, Faculty of Agriculture, Shahed University, Tehran

6 Former M.Sc. Student of Agronomy, Department of Agronomy and Plant Breeding Sciences, Aburaihan Campus, University of Tehran, Pakdasht, Iran.

چکیده [English]

In order to study the foliar application of melatonin on plants grown from safflower in different seed qualities under drought condition, two field experiments have been carried out at research farm of Aburaihan Campus, University of Tehran, between 2017 and 2018 growing seasons. The experimental design is split-factorial in a randomized complete block design with four replicates, with the treatments being consisted of two levels of drought stress (1- normal irrigation (no-stress) and 2- irrigation after reaching 85% of soil moisture depletion of field capacity at flowering stage (drought stress)), in the main plots. The subplots include 4 treatments, including a factorial combination of seed quality (stored seed and recently harvested seeds) and foliar application (the control and melatonin foliar application). Results from these experiments illustrate that melatonin foliar application has significantly increased the seed yield of stored seed by 589Kg.ha-1, compared to the control. It is also shown that SOD and CAT activities have been increased in response to melatonin in plants grown from recently-harvested seeds under drought condition. Furthermore, it is indicated that foliar application of melatonin decrease the amount of leaf soluble proteins by 28% in plants grown from recently-harvested seeds under drought conditions. According to the results, the amount of malondialdehyde is decreased by 37% in plants grown from recently-harvested seeds by foliar application of melatonin under drought conditions. It seems that seed quality has an enormous influence on grown plants and that using melatonin may play a substantial role in ameliorating the injuries derived from stress on safflower plant.

کلیدواژه‌ها [English]

  • Catalase
  • Malondialdehyde
  • Oilseed
  • Proline
  • Seed yield
Ahanger, M. A., Tyagi, S. R., Wani, M. R., & Ahmad, P. (2014). Drought tolerance: Roles of organic osmolytes, growth regulators and mineral nutrients. In: Ahmad P, Wani M R, eds., Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York. pp. 25-56.
Akbari, G. A., Heshmati, S., Soltani, E., & Amini Dehaghi, M. (2019). Influence of Seed Priming on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Grown Under Water Deficit. International Journal of Plant Production, 14, 245-258. https://doi.org/10.1007/s42106-019-00081-5
Antoniou, C., Chatzimichail, G., Xenofontos, R., Pavlou, J. J., Panagiotou, E., Christou, A., & Fotopoulos, V. (2017). Melatonin systemically ameliorates drought stress‐induced damage in Medicago sativa plants by modulating nitro‐oxidative homeostasis and proline metabolism. Journal of Pineal Research, 62(4), e12401.
Arnao, M.B., & Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research, 59(2), 133-150.
Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science, 24(1), 38-48.
Aziz, A., Akram, N. A., & Ashraf, M. (2018). Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123, 192-203.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401-442.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
Campos, C. N., Ávila, R. G., de Souza, K. R. D., Azevedo, L. M., & Alves, J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37-47.
Chance, B., & Maehly, A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
Coşge, B., Gürbüz, B., & Kiralan, M. (2007). Oil content and fatty acid composition of some safflower (Carthamus tinctorius L.) Varieties sown in spring and winter. International Journal of Natural & Engineering Sciences, 1(3).
Cui, G., Sun, F., Gao, X., Xie, K., Zhang, C., Liu, S., & Xi, Y. (2018). Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 248(1), 69-87.
de Souza, T. C., Magalhães, P. C., de Castro, E. M., Carneiro, N. P., Padilha, F. A., & Júnior, C. C. G. (2014). ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regulation,73(3), 205-217.
De Vos, C.H.R., Schat, H., DeWaal,M.A.M., Vooijs, R., & Ernst, W.H.O. (1991). Increased resistance to copper‐induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum,82(4),523-528.
Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212-228.
Demir, I., Ozuaydın, I., Yasar, F., & Van Staden, J. (2012). Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. South African Journal of Botany, 78, 83-87.
Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., & Feller, U. (2009). Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiologiae Plantarum, 31(6), 1129.
Ebrahimian, E., Seyyedi, S. M., Bybordi, A., & Damalas, C. A. (2019). Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agricultural Water Management, 218, 149-157.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht.
Fathi Amirkhiz, K., Amini Dehaghi, M., Modares Sanavy, S.A.M., & Rezazadeh, A. (2021).  Evaluation of changes in fatty acid profile, grain, and oil yield of Carthamus tinctorius L. in response to foliar application of polyamine compounds under deficit irrigation conditions.  Industrial Crops and Products, 161. https://doi.org/10.1016/j.indcrop.2020.113231
Filippou, P., Bouchagier, P., Skotti, E., & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1-10.
Flemmer, A. C., Franchini, M. C., & Lindström, L. I. (2015). Description of safflower (Carthamus tinctorius) phenological growth stages according to the extended BBCH scale. Annals of Applied Biology, 166(2), 331-339.
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(03), 269-279.
Gao, W., Zhang, Y., Feng, Z., Bai, Q., He, J., & Wang, Y. (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules, 23(7), 1580.
Ghanati, F., Morita, A., & Yokota, H. (2002). Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Science and Plant Nutrition, 48(3), 357-364.
Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314.
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321.
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77.
Huang, B., Chen, Y., Zhao, Y., Ding, C., Liao, J., Hu, C., Zhou, L.J., Zhang, Z.W., Yuan, S., & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science, 10, 677.
Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36(1), 4.
Ibrahim, W., Zhu, Y. M., Chen, Y., Qiu, C. W., Zhu, S., & Wu, F. (2019). Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiologia Plantarum, 165(2), 343-355.
Johnson, R. C., Petrie, S. E., Franchini, M. C., & Evans, M. (2012). Yield and yield components of winter-type safflower. Crop Science, 52(5), 2358-2364.
Jumrani, K., & Bhatia, V. S. (2019). Interactive effect of temperature and water stress on physiological and biochemical processes in soybean. Physiology and Molecular Biology of Plants, 25(3), 667-681.
Koutroubas, S. D., & Papakosta, D. K. (2010). Seed filling patterns of safflower: Genotypic and seasonal variations and association with other agronomic traits. Industrial Crops and Products, 31(1), 71-76.
Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (2004). Cultivar and seasonal effects on the contribution of pre-anthesis assimilates to safflower yield. Field Crops Research, 90(2-3), 263-274.
Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (2009). Phenotypic variation in physiological determinants of yield in spring sown safflower under Mediterranean conditions. Field Crops Research, 112(2-3), 199-204.
Li, C., Tan, D. X., Liang, D., Chang, C., Jia, D., & Ma, F. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 66(3), 669-680.
Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., & Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity‐induced stress in Malus hupehensis. Journal of Pineal Research, 53(3), 298-306.
Li, J., Yang, Y., Sun, K., Chen, Y., Chen, X., & Li, X. (2019). Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules, 24(9), 1826.
Liang, B., Ma, C., Zhang, Z., Wei, Z., Gao, T., Zhao, Q., Ma, F., & Li, C. (2018). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and Experimental Botany, 155, 650-661.
Liang, D., Ni, Z., Xia, H., Xie, Y., Lv, X., Wang, J., Lin, L., Deng, Q., & Luo, X. (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae, 246, 34-43.
Liu, J., Wang, W., Wang, L., & Sun, Y. (2015). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation, 77(3), 317-326.
Marček, T., Hamow, K. A., Vegh, B., Janda, T., & Darko, E. (2019). Metabolic response to drought in six winter wheat genotypes. PloS One, 14(2).
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9(10), 490-498.
Movahhedy-Dehnavy, M., Modarres-Sanavy, S. A. M., & Mokhtassi-Bidgoli, A. (2009). Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Industrial Crops and Products, 30(1), 82-92.
Nabipour, M., Meskarbashee, M., & Yousefpour, H. (2007). The effect of water deficit on yield and yield components of safflower (Carthamus tinctorius L.). Pakistan Journal of Biological Sciences, 10, 421-426.
Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 112, 44-54.
Nakagawa, A. C., Itoyama, H., Ariyoshi, Y., Ario, N., Tomita, Y., Kondo, Y., Iwaya-Inoue, M., & Ishibashi, Y. (2018). Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism. Acta Physiologiae Plantarum, 40(6), 111.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
Nawaz, A., Farooq, M., Ahmad, R., Basra, S. M. A., & Lal, R. (2016). Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. European Journal of Agronomy, 76, 130-137.
Nazari, M., Mirlohi, A., & Majidi, M. M. (2017). Effects of drought stress on oil characteristics of Carthamus species. Journal of the American Oil Chemists' Society, 94(2), 247-256.
Omidi, A. H., Khazaei, H., Monneveux, P., & Stoddard, F. (2012). Effect of cultivar and water regime on yield and yield components in safflower (Carthamus tinctorius L.). Turkish Journal of Field Crops, 17(1), 10-15.
Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Functional Plant Biology, 39(11), 851-859.
Pushpavalli, R., Zaman-Allah, M., Turner, N. C., Baddam, R., Rao, M. V., & Vadez, V. (2015). Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology, 42(2), 162-174.
Ranganayakulu, G. S., Veeranagamallaiah, G., & Chinta, S. (2013). Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. African Journal of Plant Science, 7(12), 586-592.
Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K., & Kishor, P. K. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry, 94, 104-113.
Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin: exceeding expectations. Physiology, 29(5), 325-333.
Reiter, R. J., Tan, D. X., Terron, M. P., Flores, L. J., & Czarnocki, Z. (2007). Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochimica Polonica, 54(1), 1-9.
Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules, 20(4), 7396-7437.
Riasat, M., Kiani, S., Saed-Mouchehsi, A., & Pessarakli, M. (2019). Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition, 42(2), 111-126.
Sampaio, M. C., Santos, R. F., Bassegio, D., de Vasconselos, E. S., de Almeida Silva, M., Secco, D., & da Silva, T. R. B. (2016). Fertilizer improves seed and oil yield of safflower under tropical conditions. Industrial Crops and Products, 94, 589-595.
Santos, R. F., Bassegio, D., & de Almeida Silva, M. (2017). Productivity and production components of safflower genotypes affected by irrigation at phenological stages. Agricultural Water Management, 186, 66-74.
Sarker, U., & Oba, S. (2018) Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186(4), 999-1016.
Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21(4), 329-340.
Saxton, K. E., Rawls, W., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil-water characteristics from texture 1. Soil Science Society of America Journal, 50(4), 1031-1036.
Seghatoleslami, M. J., Kafi, M., & Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany, 40(4), 1427-1432.
Selote, D. S., & Khanna‐Chopra, R. (2004). Drought‐induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiologia Plantarum, 121(3), 462-471.
Shi, H., Jiang, C., Ye, T., Tan, D. X., Reiter, R. J., Zhang, H., Liu, R., & Chan, Z. (2015). Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany, 66(3), 681-694.
Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16(6), 289-293.
Singh, S., Angadi, S. V., Grover, K., Begna, S., & Auld, D. (2016). Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains. Agricultural Water Management, 163, 354–362. doi:10.1016/J.AGWAT.2015.10.010
Soheili-Movahhed, S., Khomari, S., Sheikhzadeh, P., & Alizadeh, B. (2019). Improvement in seed quantity and quality of spring safflower through foliar application of boron and zinc under end-season drought stress. Journal of Plant Nutrition, 42(8), 942-953.
Sperdouli, I., & Moustakas, M. (2012) Differential response of photosystem II photochemistry in young and mature leaves of Arabidopsis thaliana to the onset of drought stress. Acta Physiologiae Plantarum, 34(4), 1267-1276.
Tan, D. X., Hardeland, R., Manchester, L. C., Korkmaz, A., Ma, S., Rosales-Corral, S., & Reiter, R. J. (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63(2), 577-597.
Wang, L., Feng, C., Zheng, X., Guo, Y., Zhou, F., Shan, D., Liu, X., & Kong, J. (2017). Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. Journal of Pineal Research, 63(3), e12429.
Wang, X., Liu, H., Yu, F., Hu, B., Jia, Y., Sha, H., & Zhao, H. (2019). Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports, 9(1), 8543.
Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W.K., Ma, B., Lin, Q., Zhang, J.S., & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695-707.
Yau, S. K. (2007). Winter versus spring sowing of rain-fed safflower in a semi-arid, high-elevation Mediterranean environment. European Journal of Agronomy, 26(3), 249-256.
Ye, J., Wang, S., Deng, X., Yin, L., Xiong, B., & Wang, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum, 38(2), 48.
Zahoor, R., Zhao, W., Abid, M., Dong, H., & Zhou, Z. (2017). Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. Journal of Plant Physiology, 215, 30-38.
Zaoui, S., Gautier, H., Bancel, D., Chaabani, G., Wasli, H., Lachaâl, M., & Karray-Bouraoui, N. (2016). Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiologiae Plantarum, 38(8), 187.
Zhang, H. J., Zhang, N. A., Yang, R. C., Wang, L., Sun, Q. Q., Li, D. B., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S., & Guo, Y. D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269-279.
Zhang, J., Kenworthy, K., Unruh, J. B., Erickson, J., & MacDonald, G. (2017). Changes of leaf membrane fatty acid composition and saturation level of warm-season turfgrass during drought stress. Crop Science, 57(5), 2843-2851.
Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66(3), 647-656.
Zhang, T., Hu, Y., Zhang, K., Tian, C., & Guo, J. (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13-19.
Zhang, Z., Cao, B., Gao, S., & Xu, K. (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256(4), 1013-1024.