نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی تولید و ژنتیک گیاهی، علوم علف‌های هرز، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

2 دانشجوی کارشناسی، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

چکیده

مدل­های رگرسیون ابزاری برای کمی­کردن پاسخ جوانه‌زنی علف­های هرز به دما می­باشند. به‌منظور تعیین دمای کاردینال چهار علف­هرز خانواده شب‌بوییان منداب (Eruca sativa Mill)، خردل­ دروغین Hirschfeldia incana L. Lagreze-Fossat))، خردل­وحشی (Sinapis arvensis L.) و خاکشیربدل (Erysimum repandum L.)، چهار آزمایش جداگانه با نه دما (5، 10، 15،20، 25، 30، 35، 40 و 45 درجه سلسیوس) در قالب طرح کاملاً تصادفی با سه تکرار در دانشگاه علوم کشاورزی و منابع طبیعی خوزستان در سال 1398 انجام شد. جوانه‌زنی علف­های هرز در پاسخ به دما متفاوت و در دمای 40 درجه سلسیوس تنها علف­هرز خردل­دروغین (38 درصد) جوانه‌زنی داشت و جوانه‌زنی سایر علف­های هرز کاملاً متوقف شد. براساس مدل­های مورداستفاده، برای علف­هرز منداب (مدل بتا پنج پارامتره)، خاکشیربدل (بتا چهارپارامتره، خردل­وحشی و خردل­دروغین (دندانه­ای) بهترین مدل برای تعیین دمای کاردینال بودند. دمای مطلوب جوانه‌زنی علف­های­هرز منداب و خاکشیربدل به‌ترتیب معادل 43/19 و 01/16 درجه سلسیوس پیش‌بینی شد (بتا پنج و چهارپارامتره). هم‌چنین دمای مطلوب تحتانی و فوقانی برای علف­هرز خردل­دروغین به‌ترتیب 27/22 و 26/29 و برای خردل­وحشی 23/23 و 86/ 27 درجه سلسیوس به‌دست آمد (مدل دندانه­ای). بیش‌ترین رویش علف­های هرز منداب، خردل­دروغین و خردل­وحشی در آبان­ماه و برای علف­هرز خاکشیربدل از آذرماه تا بهمن­ماه قابل انتظار می­باشد. مدل­سازی جوانه‌زنی در پاسخ به دما می­تواند در مدیریت علف­های هرز به‌ویژه در تعیین زمان کنترل علف­های هرز موردتوجه قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Determining Cardinal Temperature for Seed Germination of Four‏ ‏Weeds Brassicaceae ‎Family

نویسندگان [English]

  • ahmad zare 1
  • maede malekpoor 2
  • maryam arabizadeh 2

1 Assistant Professor, Department of Plant Production and Genetics, Weed science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

2 M. A. Student, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

چکیده [English]

Regression models are a tool to quantify the weeds seed germination in response to temperature. In order to determinate the cardinal temperature of four weeds Brassicaceae family (Eruca sativa, Hirschfeldia incana, Sinapis arvensis, and Erysimum repandum), four separate experiments have been conducted at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45°C) as factorial, based on a complete randomized design (CRD) with three replications in Agricultural Science and Natural Resources University of Khuzestan during 2019. The First factor includes four weeds, and the second factor, weeds’ response to temperature. These have been different at 40°C only. H. incana displays some germination (38%), whereas the germination of other weeds has been completely inhibited. Based on the used models, the best models to determine cardinal temperature for E. sativa has been Beta, five parameter; for E. repandum, Beta, four parameter; and for S. arvensis, and H. incana, Dent-like model. The optimum temperature for germination of E. sativa and E. repandum are predicted to be 19.43 and 16.01 °C (Beta four and five parameter models), respectively. Moreover, the lower and upper optimum temperatures for germination of H. incana and Sinapis arvensis have been achieved at 27.22, 29.26, 23.23, and 27.86 °C, respectively (at Dent-like model). The maximum emergence of Eruca sativa, Hirschfeldia incana, and Sinapis arvensis is expected in November and from December to February for Erysimum repandum. Modeling germination in response to temperature can be considered in weed management, especially when determining the control time of weeds.

کلیدواژه‌ها [English]

  • Beta model
  • Dent-like model
  • Erysimum repandum
  • Eruca sativa
  • Hirschfeldia incana
Ali-Rachedi, S.; Bouinot, D.; Wagner, M. H.; Bonnet, M.; Sotta, B.; Grappin, P., & Jullien, M. (2004(. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 219, 479-488.
Boddy, L.G., Bradford, K.J., & Fischer, A.J. (2012). Population‐based threshold models describe weed germination and emergence patterns across varying temperature, moisture and oxygen conditions. Journal of Applied Ecology, 49(6), 1225-1236.
Bradford, K.J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260.
Castro, S. A., Figueroa, J. A., & Escobedo, V. (2016). Effect of the harvest year and cultivation temperature on the germination of Hirschfeldia incana (Brassicaceae): inferences on its invasiveness in Chile. Brazilian Journal of Botany, 39(1), 193-196.
Chauhan, B. S., Gill, G., & Preston, C. (2006). Influence of environmental factors on seed germination and seedling emergence of Oriental mustard (Sisymbrium orientale). Weed Science, 54(6), 1025-1031.
Cristaudo, A., Gresta, F., Restuccia, A., Catara, S., & Onofri, A. (2016). Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern? Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(3), 583-591.
Derakhshan, A., Gherekhloo, J., & Paravar, E. (2013(. Estimation of cardinal temperatures and thermal time requirement for cyperus difformis seed germination. Iranian Journal of Weed Science, 9, 127-38. (In Persian).
DiTomaso, J. M., Kyser, G. B., Oneto, S. R., Wilson, R. G., Orloff, S. B., Anderson, L. W. & Ransom, C. (2013). Weed control in natural areas in the western United States. Weed Research and Information Center, University of California, 544.
Fallahi, H. R.; Mohammadi, M.; Aghhavani-Shajari, M., & Ranjbar, F. (2015). Determination of germination cardinal temperatures in two basil (Ocimum basilicum L.) cultivars using non-linear regression models. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 140-145.
Gardarin, A., Dürr, C., & Colbach, N. (2011). Prediction of germination rates of weed species: Relationships between germination speed parameters and species traits. Ecological Modelling; 222, 626-636.
Guo, C., Shen, Y., & Shi, F. (2020). Effect of Temperature, Light, and Storage Time on the Seed Germination of Pinus bungeana Zucc. ex Endl: The Role of Seed-Covering Layers and Abscisic Acid Changes. Forests, 11(3), 300. https://doi.org/10.3390/f11030300.
Hani, M., Fenni, M., & Bouharati, S. (2011). Inference system for identification of cereals weeds seeds. Journal of Environmental Science and Engineering; 5, 1337-1342.
Jalilian, J., & Khalili-Aghdam, N. (2015). Effect of alternative temperature on germination rate of Rocket seed (Eruca sativa). International Journal of Seed Research, 2(1), 127-133. (In Persian).
Khalaj, H., Allahdadi, I., Irannejad, H., Akbari, G. A., Minbashi, M., & Baghestani, M. A. (2012). Using nonlinear regression approach for prediction of cardinal temperature of canola and four common weeds. Journal of Agroecology, 21-33. (In Persian).
Kleemann, S. G., Chauhan, B. S., & Gill, G. S. (2007). Factors affecting seed germination of perennial wall rocket (Diplotaxis tenuifolia) in Southern Australia. Weed Science, 55(5), 481-485.
Manalil, S., Ali, H. H., & Chauhan, B. S. (2018). Germination ecology of turnip weed (Rapistrum rugosum L.) All.) in the northern regions of Australia. PloS one, 13(7), 1-12.
Nakao, E. A., & Cardoso, V. J. M. (2016). Analysis of thermal dependence on the germination of braquiarão seeds using the thermal time model. Brazilian Journal of Biology, 76(1), 162-168.
Nejadhasan, B., Zeinali, E., Siahmarguee, A., Ghaderifar, F., & Soltani, E. (2017(. Studying the response of seed germination of neglected plant arugula (Eruca sativa Mill.) to some environmental factors, Journal of Plant Production Research, 24(2), 77-91. (In Persian).
Ruíz-Corral, J. A.; Flores-López, H. E.; Ramírez-Díaz, J. L., & González-Eguiarte, D. R. (2002). Cardinal temperatures and length of maturation cycle of maize hybrid H-311 under rainfed conditions. Agrociencia, 36, 569-577.
Salimi, H., & Faridoonpour, M. (2013). Investigating the effect of environmental factors on seed germination of Hirschfeldia incana (L.) Lagr.-Foss. Weed Research Journal, 5(1), 71-84. (In Persian).
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Ulian, T., Way, M., Castillo-Lorenzo, E., Dávila-Aranda, P. D., Lira-Saade, R., Téllez-Valdéz, O., Rodriguez-Arevalo, N. I., & Flores-Ortíz, C. M. (2019). Thermal Time and Cardinal Temperatures for Germination of Cedrela odorata L. Forests, 10(10), 841. https://doi.org/10.3390/f10100841.
Soltani, E., Soltani, A., Galeshi, S., Ghaderi, F. F., & Zeinali, E. (2013). Seed germination modeling of wild mustard (Sinapis arvensis L.) as affected by temperature and water potential: hydrothermal time model. Journal of Plant Production. 20(1), 19-33. (In Persian).
Zhao, N., Li, Q., Guo, W., Zhang, L., & Wang, J. (2018). Effect of environmental factors on germination and emergence of shortawn foxtail (Alopecurus aequalis). Weed Science, 66(1), 47-56.