نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 استاد، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 3. دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

تحلیل خلأ عملکرد یک تخمین کمی از امکان افزایش در ظرفیت غذا برای یک ناحیه مشخص را فراهم می­آورد که یک جزء مهم در طراحی راهبردهای تأمین غذا در مقیاس منطقه­ای، ملی و در سطح جهانی است. در این راستا پژوهشی به‌منظور میزان و چگونگی پراکنش خلأ عملکرد محصول نخود و عدس در دانشگاه علوم کشاورزی و منابع طبیعی گرگان در سال 1395-1397 انجام گرفت. در این مطالعه با استفاده از مدل SSM-iCrop2 عملکرد پتانسیل در مناطق تولیدکننده نخود و عدس در ایران شبیه­سازی شد. برای این منظور از پروتکل پروژه اطلس خلأ عملکرد، موسوم به پروتکل GYGA، در جهت شناسایی پهنه­های اقلیمی و هم‌چنین شناسایی ایستگاه­های هواشناسی مهم واقع در مناطق تولید نخود و عدس دیم در کشور استفاده شد. پس از شناسایی ایستگاه­های مهم، پتانسیل عملکرد برای محدوده ایستگاه­ها شبیه­سازی شد و سپس نتایج منطقه­ای براساس پروتکل GYGA به کل کشور تعمیم داده شد. برای نخود دیم در کشور، مقادیر عملکرد واقعی، پتانسیل و خلأ عملکرد به‌ترتیب 43/0، 04/1 و 61/0 تن در هکتار به‌دست آمد. در مورد عدس دیم در کشور نیز، مقادیر عملکرد واقعی، پتانسیل و خلأ عملکرد به‌ترتیب 43/0، 10/1 و 67/0 تن در هکتار به‌دست آمد. از این اطلاعات می­توان جهت مدیریت بهتر در مناطق کم بازده و پربازده در کشور برای این دو محصول بهره برد.

کلیدواژه‌ها

عنوان مقاله [English]

The amount and How to distribute of chickpea and lentil yield gap in Iran

نویسندگان [English]

  • raheleh arabameri 1
  • afshin soltani 2
  • Ebrahim Zeinali 3
  • benyanen torabi 4

1 Ph.D. Student, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Professor, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Professor, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 Associate Professor, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

چکیده [English]

Yield gap analysis is a quantitative estimate of possible increase of the capacity to provide food for a specified area. It is an important component for designing strategies to supply food on a scale of regional, national, and global level. In this regard a study has been conducted to determine the extent and function of chickpea and lentil crop vacancy distribution at Gorgan University of Agricultural Sciences and Natural Resources during 2016-2018. Using SSM-iCrop2 model, the study simulates potential yield in chickpea and lentil producing regions in Iran. For this purpose, it employs the protocol of Atlas Gap Project, called GYGA protocol, to identify climatic zones and identify important meteorological stations, located in chickpea and lentil production areas in the country. After identifying the important stations, the performance potential for the station range is simulated and then the regional results are generalized to the whole country, based on the GYGA protocol. For dryland chickpeas in the country, the values of actual and potential yield as well as yield gap have been 0.43, 1.04, and 0.61 tons per hectare, respectively. In case of rainfed lentils in the country, the values of actual yield and potential along with yield gap have been 0.43, 1.10, and 0.67 tons per hectare, respectively. The present study can be used for better management in low-yield and high-yield areas of the country for these two products.

کلیدواژه‌ها [English]

  • Climatic-agro-zoning
  • evaporation
  • GYGA protocol
  • potential yield
  • SSM-icrop2 model
  • yield gap
Bhatia, V., Singh, P., Wani, S., Chauhan, G., Rao, A.K., Mishra, A., & Srinivas, K. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural and Forest Meteorology, 148(8), 1252-1265.
Espe, M.B., Gassman, K.G., Yang, H., Guilpart, N., Grassini, P., Van .Wart, J., Anders, M., Beighley, D., Harrell, D., Linscombe, S., McKenzie, K., Mutters, R., Wilson, L.T., & Linquist, B.A. (2016). Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research, 196, 276-283.
Fischer, R.A. (2015). Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Reserch, 182, 9-18. .
Gobbett, D.L., Hochman, Z., Horan, H., Navarro Garcia, J., Grassini, P., & Cassman, K.G., (2017). Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155(2), 282-299.
Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2918, 1-11.
Keating, B. A., Herrero, M., Carberry, P. S., Gardner, J., & Cole, M. B. (2014). Food wedges: framing the global food demand and supply challenge towards 2050. Global Food Security, 3, 125-132.
Koo, J., & Dimes, J. (2010). HC27 Generic Soil Profile Database. Version 1, July. International Food Policy Research Institute, Washington, DC.
Meghdadi, N., Soltani, A., Kamkar, B., & Hajarpoor, A. (2014). Agroecological zoning of Zanjan province for estimating yield potential and yield gap in dryland-base chickpea production systems. Plant Production  Research, 21(3), 27-49. (In persian).
Rassam, G., & Soltani, A. (2007). Optimizing chickpea production management under rainfed conditions using the Computer simulation. In: Proceeding of 2nd National Symposium of Organic Farming, Oct 17–18. University of agriculture Sciences and Natural Resourcess, Gorgan. Iran (In persian).
Statistics of the Ministry of Agriculture. 2000-2015. Agricultural Statistics of the first period: crops. Ministry of Jihad Agriculture, Deputy Minister of Planning and Economy, Bureau of Statistics and Information Technology. Retrieved from https://www.maj.ir/Dorsapax/userfiles/Sub65/amarzeraei-j.pdf
Soltani, A., Hajjarpour, A., & Vadez, V. (2016). Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 185, 21-30.
Soltani, A., Nehbandani, A., Zeinali, A., Torabi, B., Zand, A., Ghasemi, S., Alasti, A., Dadrasi, A., Hoseani, R., Alimaghm, S.M., Zahed, M., Mohamad Zadeh, Z., Kamari, H., Arabameri, R., Fayazi, H., Rahban, S., Mohamadi, S & Keramat, S. (2018). Providing a gap Atlas for the performance and potential of important crops In the country in present and future climates. Gorgan. Sirang Press.
Soltani, A., Robertson, M.J., Mohammad-Nejad, Y., & Rahemi-Karizaki, A. (2006). Modeling chickpea growth and development: Leaf production and senescence. Field crops research, 99(1), 14-23.
Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. CABI Publisher. 312 p.
Soltani, A., & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124, 252-260.
Van Bussel, L.G.J., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., & van Ittersum, M.K., (2015). From field to atlas: Upscaling of location- pecific yield gap estimates. Field Crops Research, 177, 98-108. .
Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance-A review. Field Crops Research, 143, 4-17.
Van Wart, J., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34-43.
Whitbread, A. M., Davoren, C. W., Gupta, V. V. S. R., Llewellyn, R., & Roget, D. (2015). Long-term cropping system studies support intensive and responsive cropping systems in the low-rainfall Australian Mallee. Crop and Pasture Science, 66, 553-565.