تاثیر کودهای زیستی و پوترسین بر بیوماس، گره‌زایی و برخی صفات مورفولوژیکی و بیوشیمیایی ماشک گل خوشه‌ای تحت شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 3. دانشجوی دکتری، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

به­منظور بررسی تأثیر کودهای زیستی و پوترسین بر بیوماس، گره­زایی و برخی صفات مورفولوژیکی و بیوشیمیایی ماشک گل خوشه‌ای تحت شرایط دیم، آزمایشی در سال 1398 به­صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه محقق اردبیلی اجرا شد. فاکتورهای موردبررسی شامل کودهای زیستی (عدم کاربرد کودهای زیستی به­عنوان شاهد، کاربرد ریزوبیوم (Rhizobium legominuzarum)، کاربرد میکوریز (Glomus mosseae)، کاربرد توأم میکوریز با ریزوبیوم، ریزوبیوم و ازتوباکتر (Azotobacter chrocoocom strain 5)، میکوریز و ازتوباکتر، ریزوبیوم با ازتوباکتر و میکوریز] و محلول­پاشی پوترسین در سه سطح (محلول­پاشی با آب به­عنوان شاهد و محلول­پاشی 5/0 و 1 میلی­مولار پوترسین) بودند. نتایج نشان داد کاربرد توأم ازتوباکتر با میکوریز و ریزوبیوم و محلول­پاشی یک میلی­مولار پوترسین وزن ریشه، سهم برگ از بیوماس کل، قندهای محلول برگ و ساقه و بیوماس کل را به­ترتیب 33/133، 5/4، 94/31، 82/41 و 94/56 درصد نسبت به عدم کاربرد کودهای زیستی و عدم محلول­پاشی با پوترسین افزایش داد. هم‌چنین کاربرد توأم ازتوباکتر با میکوریز و ریزوبیوم و محلول­پاشی یک میلی­مولار پوترسین هدایت الکتریکی و میزان مالون­دی­آلدئید را به­ترتیب 99 و 39/125 درصد در مقایسه با عدم کاربرد کودهای زیستی و عدم محلول­پاشی با پوترسین کاهش داد. به­نظر می­رسد کاربرد کودهای زیستی و محلول­پاشی پوترسین می‌تواند بیوماس کل ماشک گل­خوشه‌ای تحت شرایط دیم را به‌واسطه بهبود صفات بیوشیمیایی و مورفولوژیکی افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Biofertilizers and Putrescine on Biomass, Nodulation and Some Morphological and Biochemical Traits of Vicia villosa under Rainfed Condition

نویسندگان [English]

  • Raouf Seyed sharif 1
  • reza seyed sharifi 2
  • hamed narimani 3
1 Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
2 2Associate Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Ph.D. Candidate, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

In order to study the effect of bio-fertilizers and putrescine on biomass, nodulation, and some morphological and biochemical traits of vetch(vicia villosa)under rainfed conditions, a factorial experiment has been conducted based on randomized complete block design with three replications in research farm of University of Mohaghegh Ardabili within 2018-2019. The studied factors include bio-fertilizers(withoutbio-fertilizersas control, application of Rhizobium  (Rhizobium legominuzarum), Mycorrhiza (Glomus mosseae), both application of Mycorrhiza and Rhizobium, Rhizobium and Azotobacter (Azotobacter chrocoocom strain 5), Mycorrhiza and Azotobacter, Rhizobium with Mycorrhiza,and Azotobacter) as well as foliar application of putrescine in three levels (foliar application with water as the control, application of 0.5 and 1 mM putrescine). Results show that both application of Azotobacter with Mycorrhiza and Rhizobium and foliar application of 1 mM putrescine increase root weight, leaf share from total biomass, soluble sugars of leaf and stem, and total biomass by 133.33%, 4.5%, 31.94%, 41.82%, and 56.94%, respectively, in comparison with no application of bio-fertilizers and putrescine. Also, application of Azotobacter with Mycorrhiza and Rhizobium and foliar application of 1 mM putrescine decrease electrical conductivity and malondialdehyde by 99% and 125.39%, respectively, in comparison with no application of bio-fertilizers and putrescine. It seems that application of bio-fertilizers and foliar application of putrescine can boost total biomass of vica villosa under rainfed condition as it improves both biochemical and morphological traits.

کلیدواژه‌ها [English]

  • Azotobacter
  • bio fertilizers
  • Electrical conductivity
  • Malondialdehyde
  • Rhizobium and Total biomass
Amirinejad, M., Akbari, G. A., Baghizadeh, A., Allahdadi, I., Shahbazi, M., & Naimi, M. (2016). Effects of drought stress and foliar application of zinc and iron on some biochemical parameters of cumin. Agricultural Crop Management (Journal of Agriculture), 17(4), 855-866. (in Persian). DOI: (10.22059/jci.2015.5513).
Amraee Tabar, S., Ershadi, A., & Robati, T. (2016). The effect of putrescine and spermine on drought tolerance of Almond and Peach. Journal of Crops Improvement, 18 (1): 203-218. (in Persian). DOI: 10.22059/jci.2016.56558
Anjum, M.A (2010). Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiologiae Plantarum. 32, 951-959. DOI: 10.1007/s11738-010-0483
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Ashraf, H., Zakizadeh, H., Ehteshami, M., & Bigloei, M.H. (2017). Evalution the symbiosis of three mycorrhizae fungi species on biochemical characteristics of Kentucky bluegrass (Poa pratensis) and Agropyron (Agropyron elongatum) turfgrasses under drought stress conditions. Journal of Plant Researchers, 24 (3), 27-46.  (in Persian). DOI: 10.22069/jopp.2017.11243.2040
Banerjee, M., Yesmin, R. L., & Vessey, J. L. (2006). Plant-growth- promoting rhizobacteria as biofertilizers and biopesticides. pp. 137-181. In: Handbook of microbial biofertilizers. Ed., Rai, M., K., Food Production Press, U.S.A
Bates, L.S., Walderen, R.D., & Taere, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., & Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. European Journal of Histochemistry, 45, 39-49. DOI: 10.4081/1612
Bregoli, A. M., Scaramagli, S., Costa, G., Sabatini, E., Ziosi, V., Biondi, S., & Torrigiani, P. (2002). Peach (Prunus persica L.) fruit ripening: amino ethoxyvinyl glycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiology Plant, 114, 472-481. DOI: 10.1034/j.1399-3054.2002.1140317.x
Das, I., Pradhan, A. K., & Singh, A. P. (2014). Yield and yield attributing parameters of organically cultivated mung bean as influenced by PGPR and organic manures. Journal of  Crop and Weed, 10(1), 172-174.
Dashadi, M., Khosravi, H., Moezzi, A., Nadian, H., & Heidari, M. (2011). Co-inoculation of Rhizobium and Azotobacter on growth of faba bean under water deficit conditions. American-Eurasian Journal of Agriculture and Environmental Sciences, 11(3), 314-319.
Demir, S. (2004). Influence of arbuscular mycorrhizal on some physiological‚ growth parameters of pepper. Turkish Journal of  Biology, 28, 85-90.
Dubios, M., Gilles, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28, 350-356.
Figueiredo, M., Seldin, L., De Araujo, F., & Mariano, R. (2010). Plant growth promoting rhizobacteria: Fundamentals and applications in Plant Growth and Health Promoting Bacteria. D.K. Maheshwari (ed), 21-43.
Gilick, B.E., Penrose D., & Wenbo, M. (2001). Bacterial promotion of plant growth. Biotechnology Advances, 19, 135-138. DOI: 10.1016/S0734-9750(00)00065-3
Giri, B., & Mukerji, G.K. (2004) Mucorrhiza inoculate alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307-312. DOI: : https://doi.org/10.1007/s00572-003-0274-1.
Groppa, M. D., & Benavides, M. P. (2008) Polyamines and abiotic stress: recent advances. Amino Acids. 34: 35-45. DOI: : https://doi.org/10.1007/s00726-007-0501-8
Heidari, M., Mousavinik, S.M., & Golpayegani, A. (2011). Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. Journal of Agricultural and Biological Science, 6, 6-11.
Hosseinzadeh, S.R., Amiri H., & Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54(1), 87-92. Doi: : https://doi.org/10.1007/s11099-015-0162-x
Hussein, M., EL-Gereadly, H.M., & EL-Desuki, M. (2006). Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). Applied Science Research, 2, 598-604.
Kapoor, R., Evelin, H., Mathur, P., & Giri, B. (2013). Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Plant acclimation to environmental stress (Eds. Tuteja, N. and Gill, SS). Pp. 359-401. Springer LLC: DOI: 10.1007/978-1-4614-5001-6_14
Kheirizadeh Arough, Y., Seyed Sharifi, R., & Seyed Sharifi, R. (2016). Biofertilizers and zinc effects on some physiological parametrs of triticale under water limitation. Journal of Plant Interactions, 11(1), 167-177. Doi: http://dx.doi.org/10.1080/17429145.2016.1262914
Kianmehr, A.S., & Mehdizadeh, R. (2014). Phylogenic Study of Proline Dehydrogenase Producing Pseudomonas putida Bacterium and Bioinformatics Analysis of Isolated Enzyme. Journal of Cellular and Molecular Researches, 27,285-295.
Kamaei, R., Parsa, M & Jahan, M. (2015). The effect different fertilizers, on germination, yield, of Vicia vilosa Roth. Iranian  Journal of  Field Crops Research, 13(2), 391-398. (in Persian)
Kurdali, F.N., Sharabi, E., & Arsalan, A. (1996). Rainfed vetch-barley mixed cropping in the Syrian semi-arid conditions. Plant and Soil, 183(1), 137-148. DOI: : https://doi.org/10.1007/BF02185574
Lawlor, D.W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associatedmetabolism in relation to water deficits in higher  plants. Plant, Cell and Environment, 25, 275-294. DOI: 10.1046/j.0016-8025.2001.00814.x
Loggini, B., Scartazza, A., Brugnoli, E., & Navari Izzo, F. (1999) Antioxidative defense system pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology , 119,1091-1100. DOI: https://doi.org/10.1104/pp.119.3.1091
Mahgoub, M.H., Abd El Aziz, N.G., & Mazhar, M.A. (2011). Response of Dahilia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American-Eurasian Journal of Agriculture and Environmental Sciences, 10, 769-775.
Manske, G.B., Luttger, A., Behle, R.K., Vlek, P.G., & Cimmit, M. (2000). Enhancement of mycorrhiza (VAM) infection, nutrient efficiency and plant growth by azotobacter chroococcum in wheat. Journal of Plant Breeding and Genetics, 4, 78-83.
Maougal, R.T., Brauman, A., Plassard, C., Abadie, J. Djekoun, A., & Drevon, J.J. (2014). Response of Dahilia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American-Eurasian Journal of Agricultural & Environmental Sciences, 10, 769-775.
Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press, London p.889
Maxwell, K., & Johnson, G. N. (2000) Chlorophyll fluorescence ea practical guide. Journal of  Experimental Botany.  51, 659-668. https://doi.org/10.1093/jexbot/51.345.659
Namvar, A., Seyed Sharifi, R., Sedghi, M., Khandan, T., & Eskandarpour, B. (2011). Study on the effects of organic and inorganic nitrogen fertilizer on yield, yield components, and nodulation state of chickpea (Cicer arietinum L.). Communications in Soil Science and Plant Analysis, 42(9),1097-1109. https://doi.org/10.1080/00103624.2011.562587
Nayyar, H., Satwinder, K., Kumar, S., Singh, K.J., & Dhir, K. (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Botanical Bulletin of Academia Sinica, 46, 333-338.
Neeraj Singh, K. (2011). Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rotdisease and enhance the yield of Phaseolus vulgaris L, European Journal of Soil Biology, 47, 288-295. https://doi.org/10.1016/j.ejsobi.2011.07.002
Nemat-Alla, M. M., Badawi, A. M., Hassan, N. M., El-Bastawisy, Z.M., & Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90, 8-18. https://doi.org/10.1016/j.pestbp.2007.07.003
Nematollahi, E., Jafari, A., & Bagheri, A. (2012). Effect of drought stress and salicylic acid on photosynthesis pigments and macronutrients absorption in two sunflower (Helianthus annuus L.) cultivars. Journal of Plant Ecophysiology 5(12), 51-37. (In Persian).
Ohe, M., Rapolu, M., Mieda, T., Miyagawa, Y., Yabuta, Y., Yoshimura, K., & Shigeoka, S. (2005). Decline in leaf photooxiadtive-stress tolerance with age in tobacco. Plant Science, 168, 1487-1493. https://doi.org/10.1016/j.plantsci.2005.01.020
Paknejad, F., Nasri, M., Tohidi Moghadam, H.R., Zahedi, H., & Jami Alahmad, M.  (2007). Effects of drought stress on chlorophyll fluorescence parameters chlorophyll content and grain yield of wheat cultivars. Journal Biological Sciences, 7, 841- 847. DOI: 10.3923/jbs.2007.841.847
Perez-Vicente, A., Martinez-Romero, D., Carbonell, A., Srrano, M., Riquelme, F., Guillen, F., & Valero, D. (2002). Role of polyamines in extending shelf life and reduction of mechanical damage during plum (Prunus Salicina L.) storage, Postharvest Biology and Technology, 25(1), 25-32. DOI:10.1016/S0925-5214(01)00146-6
Pritsa, T. S., & Demetios, G.V. (2005). Correlation of ovary and leaf spermidine and spermine content with the alternate bearing habit of olive. Journal of Plant Physiology, 162, 1284-1291. https://doi.org/10.1016/j.jplph.2005.01.017
Radhakrishan, R., & Lee I.J. (2013). Spermine promotes acclimination to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic asid signals in soybean. Journal  of  Plant  Growth Regulation. 32,22-30. DOI: : https://doi.org/10.1007/s00344-012-9274-8
Reddy, A.R., Chaitanya, K.V., & Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology,161, 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
Sandhya, V., Ali, SKZ., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21-30. DOI: : https://doi.org/10.1007/s10725-010-9479-4
Schellenbaum, L., Muller, J., Boller, T., Wiemken, A., & Schüepp, H. (1998). Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of nonstructural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytology, 138, 59-66. DOI: https://doi.org/10.1046/j.1469-8137.1998.00892.x
Schwartz, A. I., Ortiz, M., Maymon, C., Herbold, N., & Fujishige, F. (2013). Bacillus simplex- A little known PGPR with anti-fungal activity- Alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. Viciae. Agronomy Journal, 3, 595-620. DOI: 10.3390/agronomy3040595
Seyed Sharifi, R., & Namvar, A. (2016). Biofertilizers in Agronomy. University of Mohaghrgh Ardabili press. 282 p. (in Persian)
Seyed Sharifi, R. (2016). Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean (Glycine max L.). Journal of Zemdirbyste-Agriculture, 3(103), 73-78. DOI 10.13080/z-a.2016.103.032
Shu, S., Guo, S.R. & Yuan, L.Y. (2012). A review: Polyamines and photosynthesis. PP. 439-464. In: Najafpour, M. (Ed.), Advances in Photosynthesis-Fundamental Aspects. DOI: 10.5772/26875
Singh Gill, S., &Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plant. Plant Signaling and Behavior, 5(1), 26-33. Pages 26-33
https://doi.org/10.4161/psb.5.1.10291
Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savoure, A., & Abdelly, C. (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany, 61, 10-17. https://doi.org/10.1016/j.envexpbot.2007.02.004
Song, H. (2005). Effects of vam on host plant in condition of drought stress and its mechanisms. Electronic Journal of Biology, 1(3), 44-48.
Sotiropoulos, T. E., Therios, I. N., Almaliotis, D., Papadakis, I., &Dimass, K. N. (2006). Response of cherry rootstocks to boron and salinity. Journal of Experimental Botany, 29, 1691-1698. https://doi.org/10.1080/01904160600851650
Stewart, R. C., & Beweley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65, 245-248. DOI: https://doi.org/10.1104/pp.65.2.245
Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiology Plant, 126(1), 45-51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
Syed Sarfraz, H., Muhammad, A., Maqbool, A., & Kadambot, H.M. (2011) Polyamines: -Natural and engineered abiotic and biotic stress tolerance in plants”. Biotechnology Advances, 29, 300-311.
Tang, M., Chen, H., Huang, J.C., & Tian, Z.Q. (2009). Arbuscular mycorrhiza fungi effects on the growth and physiology of (Zea mays L.) seedlings under diesel stress. Soil Biology Biochemistry, 41, 936-940. https://doi.org/10.1016/j.soilbio.2008.11.007
Tang, W., & Newton, R.J. (2005). Polyamines reduce salt-induced oxidative damage by oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46, 31-43. DOI: : https://doi.org/10.1007/s10725-005-6395-0
Verma, J., Yadav, J., & Tiwari, K. (2010). Application of Rhizobium sp. BHURC01 and plant growth promoting Rhizobacteria on nodulation, plant biomass and yield of chick pea (Cicerarietinum L.). International Journal of Agricultural Research, 5(3), 148-156. DOI: 10.3923/ijar.2010.148.156
Vinocur, B., & Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123-132. https://doi.org/10.1016/j.copbio.2005.02.001
Wang, G.M., Coleman, D.C., Freckman, D.W., Dyer, M.I., McNaughton ,S.J., Acra, M.A., & Goeschl, J.D. (1989).Carbon partitioning patterns of mycorrhizal versus nonmycorrhizal plants: real time dynamic measurements using 11CO2. New Physiology, 112, 489-493. https://doi.org/10.1111/j.1469-8137.1989.tb00342.x
Wang, Y., & Oyaizu, H. (2008). Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials, 168(2), pp. 760-764. https://doi .org/10.1016/j.jhazmat.2009.02.082
Yadegari, M. (2014). Inoculation of bean (Phaseolus vulgaris) Seeds with Rhizobium phaseoli and plant growth promoting rhizobacteria. Advances in Environmental Biology, 8(2), 419-424.
Yang, M., Shi, L., Xu, F. S., Lu, J. W., & Wang, Y. H. (2009). Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere, 19(1), 53-59. https://doi.org/10.1016/S1002-0160(08)60083-1
Zhang, RH., Li, J., Guo., S.R., &Tezuka, T. (2009). Effects of exogenous putrescine on gasexchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynthesis Research, 100, 155-162. doi: 10.1007/s11120-009-9441-3.