Agbogidi, O. M. (2011). Effects of crude oil contaminated soil on biomass accumulation in Jatropha curcas L. seedlings. Journal of Ornamental and Horticultural Plants, 1(1), 43-49. (in Persian)
Anjum, S. A., Farooq, M., Xie, X. Y., Liu, X. J. & Ijaz, M. F. (2012). Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140(1), 66-73. DOI: 10.1016/j.scienta.2012.03.028
Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C. & Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology, 93(2), 145-153. DOI: 10.1016/j.biortech.2003.10.014
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
Atiyeh, R. M., Arancon, N., Edwards, C. A. & Metzger, J. D. (2000). Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75(3), 175-180. https://doi.org/10.1016/S0960-8524(00)00064-X
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q. & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technolog, 84(1), 7-14. DOI: 10.1016/s0960-8524(02)00017-2
Barati, M., Bakhtiari, F., Mowla, D. & Safarzadeh, S. (2017). Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environmental Earth Sciences, 76(20), 688. DOI: 10.1007/s12665-017-7017-7
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Beesley, L., Moreno-Jiménez, E. & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282-2287. DOI: 10.1016/j.envpol.2010.02.003
Brändli, R. C., Hartnik, T., Henriksen, T. & Cornelissen, G. (2008). Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere, 73(11), 1805-1810. DOI: 10.1016/j.chemosphere.2008.08.034
Brennan, A., Jiménez, E. M., Alburquerque, J. A., Knapp, C. W. & Switzer, C. (2014). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 193(1), 79-87. DOI: 10.1016/j.envpol.2014.06.016
Chirakkara, R. A. & Reddy, K. R. (2015). Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265-274. DOI: 10.1016/j.ecoleng.2015.09.029
Cornelissen, G. & Gustafsson, Ö. (2004). Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology, 38(1), 148-155. DOI: 10.1021/es034776m
Deka, S. & Deka, H. (2012). Vermicompost assisted phytoremediation for abatement of crude oil contaminated soil. In Proceedings of International Conference on Anthropogenic Impact on Environment & Conservation Strategy, 1,131-136.
Hale, S. E., Elmquist, M., Brändli, R., Hartnik, T., Jakob, L., Henriksen, T. & Cornelissen, G. (2012). Activated carbon amendment to sequester PAHs in contaminated soil: A lysimeter field trial. Chemosphere, 87(2), 177-184. DOI: 10.1016/j.chemosphere.2011.12.015
Han, T., Zhao, Z., Bartlam, M. & Wang, Y. (2016). Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environmental Science and Pollution Research, 23(21), 21219-21228. DOI: 10.1007/s11356-016-7236-6
Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R. & Greenberg, B. M. (2004). Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453-463. DOI: 10.1016/j.envpol.2003.12.018
Katz, D. L. V. & Lee, R. L. (1990). Natural gas engineering: production and storage. McGraw-Hill Education . New York, United States.
Khan, D. & Shaukat, S. S. (2009). Effects of diesel oil-polluted soil on emergence and growth of seedlings of Thespesia populnea (L.) Sol. Ex. Corr. International Journal of Biology and Biotechnology, 6(4), 289-298.
Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H. & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials, 300(1), 243-253. DOI: 10.1016/j.jhazmat.2015.06.050
Kołtowski, M. & Oleszczuk, P. (2016). Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals. Environmental Toxicology and Chemistry, 35(5), 1321-1328. DOI: 10.1002/etc.3246
Kołtowski, M., Hilber, I., Bucheli, T. D., Charmas, B., Skubiszewska-Zięba, J. & Oleszczuk, P. (2017). Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils. Chemical Engineering Journal, 310(1), 33-40. DOI: 10.1016/j.cej.2016.10.065
Martía, M. C., Camejoa, D., Fernández, N., Rellán, A. R., Marquesc, S., Sevilla, F. & Jiméneza, A. (2009). Effect of oil refinery sludges on the growth & antioxidant system of alfalfa plants, Journal of Hazardous Materials, 171, 879-885. DOI: 10.1016/j.jhazmat.2009.06.083
Merkl, N., Schultze-Kraft, R. & Infante, C. (2004). Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Bioremediation Journal, 8(3-4), 177-184. DOI: 10.1080/10889860490887527
Morsy, A. A., Hassanein, A. A. & El-Refaai, H. O. (2012). Ecophysiological responsesof grey mangrove (Avicennia marina) (Forssk.) Vierh. to Oil Pollution at RasMohammed protective area. Report and Opinion, 4(8), 43-56. DOI: 10.1155/2018/7404907
Noori, A., Zare Maivan, H., Alaie, E. & Newman, L. A. (2018). Leucanthemum vulgare L. crude oil phytoremediation. International Journal of Phytoremediation, 20(13), 1292-1299. https://doi.org/10.1080/15226514.2015.1045122
Ogedegbe, A. U., Ikhajiagbe, B. & Anoliefo, G. O. (2013). Growth response of Alternanthera brasiliana (L.) Kuntze in a waste engine oil-polluted soil. Journal of Emerging Trends in Engineering and Applied Sciences, 4(2), 322-327.
Omosun, G., Markson, A. A. & Mbanasor, O. (2008). Growth and anatomy of Amaranthus hybridus as affected by different crude oil concentrations. American-Eurasian Journal of Scientific Research, 3(1), 70-74.
Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J. L. & Murphy, A. S. (2005). Phytoremediation and hyperaccumulator plants. In Molecular biology of metal homeostasis and detoxification (pp. 299-340). Springer, Berlin, Heidelberg. Germany
Peng, S., Zhou, Q., Cai, Z. & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of hazardous materials. 168(2-3), 1490-1496. DOI: 10.1016/j.jhazmat.2009.03.036
Pignatello, J. J., Kwon, S. & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40(24), 7757-7763. DOI: 10.1021/es061307m
Qin, G., Gong, D. & Fan, M. Y. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. International Biodeterioration & Biodegradation, 85, 150-155. DOI: 10.1016/j.ibiod.2013.07.004
Rekha, G. S., Kaleena, P. K., Elumalai, D., Srikumaran, M. P. & Maheswari, V. N. (2018). Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. International Journal of Recycling of Organic Waste in Agriculture, 7(1), 83-88. https://doi.org/10.1007/s40093-017-0191-5
Reynoso-Cuevas, L., Gallegos-Martinez, M. E., CruzSosa, F. & Gutierrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource Technology, 99, 6379-6385. DOI: 10.1016/j.biortech.2007.11.074
Saraeian, Z., Etemadi, N., Haghighi, M., Hajabbassi, M. A. & Afyuni, M. (2015). The effects of petroleum contaminated soil on germination and morphophysiological characteristics of wheatgrass (Agropyron desertorum) for landscape design. Journal of Plant Process and Function, 4(11), 87-98. (in Persian)
Shahriari, M. H., Savaghebi-Firrozabadi, G. R., Minai-Tehrani, D. & Padidaran, M. (2006). The effect of mixed plants alfalfa (Medicago sativa) and fescue (Festuca arundinacea) on the phytoremediation of light crude oil in soil. Environmental Sciences, 13(1), 33-40 (in Persian)
ValizadehRad, K., Motesharezade, B. & Alikhani, H. A. (2015). Effect of compost and PGPR on Calotropis Procera growth in crude oil-contaminated soil. Journal of Land Management, 3(1), 83-96. (in Persian)
Zand, A. D., Bidhendi, G. N. & Mehrdadi, N. (2010). Phytoremediation of total petroleum hydrocarbons (TPHs) using plant species in Iran. Turkish Journal of Agriculture and Forestry, 34(5), 429-438. DOI: 10.3906/tar-0903-2