بررسی تاثیر کودهای زیستی بر شاخص‌های رشدی ذرت (Zea mays L.) در خاک‌های آلوده به سرب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 دانشجوی دکتری، گروه زراعت، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 استاد، گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به منظور بررسی تاثیر کودهای زیستی بر شاخص‌های رشدی گیاه ذرت(Zea mays L.) در خاک‌های آلوده به سرب، آزمایشی در گلخانه گروه خاک‌شناسی دانشکده کشاورزی دانشگاه زنجان در سال 1394 بصورت فاکتوریل بر پایه طرح کاملاً تصادفی در 3 تکرار به اجرا درآمد. تیمارهای مورد بررسی عبارت بودند از سطوح آلودگی خاک به سرب (0، 50، 100، 200 و 400 میلی‌گرم بر کیلوگرم خاک) و تلقیح با کودهای زیستی مختلف شامل: باکتری حل کننده‌ی فسفات، قارچ میکوریز گلوموس موسه‌آ و قارچ میکوریز گلوموس اینتراردیس بود. فاکتورهای مورد اندازه‌گیری شامل: شاخص کلروفیل برگ، ارتفاع گیاه، وزن تر و خشک ریشه و اندام هوایی، فسفر و پتاسیم ریشه و اندام هوایی بود. نتایج حاکی از آن بود که کاربرد کودهای زیستی شاخص‌‌های کلروفیل برگ، ارتفاع گیاه، ، فسفر و پتاسیم ریشه و اندام هوایی ذرت را نسبت به تیمار شاهد به طور معنی داری افزایش داد. تیمار قارچ گلوموس و باکتری حل کننده فسفر (M+P) توانست میزان کلروفیل برگ و ارتفاع گیاه را به ترتیب 93/11 و 89/21 درصد نسبت به تیمار شاهد بهبود دهد. با افزایش سطوح آلودگی خاک به سرب، میزان شاخص کلروفیل برگ به‌طور معنی‌داری کاهش یافت به طور کلی نتایج حاکی از آن بود که تلقیح خاک با کودهای زیستی می‌تواند، اثرات سوء و مضر سرب بر رشد و عملکرد گیاه را هر چند اندک اما کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of biofertilizers on growth indices of maize (Zea maze) in lead (Pb) contaminated soils

نویسندگان [English]

  • fatemeh rostami 1
  • moslem heydari 2
  • Ahmad golchin 3
1 Former M.Sc. Student, Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Ph.D. Candidate, Department of Agronomy, Faculty of Agriculture, Zanjan University, Zanjan, Iran
3 Professor, Department of Soil Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
چکیده [English]

In order to investigate the effect of biofertilizers on growth characteristics of maize (Zea mays L.) in lead contaminated soils, a experiment was conducted in a greenhouse of Faculty of Agriculture, Zanjan University in 2015, Factorial experiment based on a completely randomized design (CRD) in 3 Replication. The treatments included soil contamination levels of lead (0, 50, 100, 200 and 400 mg / kg soil), and inoculation with different bio-fertilizers was including phosphate solubilizing bacteria, Glomus museae mycorrhiza and the Glomus Intardis mycorrhiza. The measured factors included: leaf chlorophyll index, plant height, fresh and dry weight of root and shoot, and phosphorus and potassium of root and shoot. The results indicated that application of bio-fertilizers significantly increased leaf chlorophyll index, plant height, potassium, phosphorus, and weight of root and shoot significantly compared to control treatment. Glomus fungus and + solubilizing bacteria (M + P) improved the leaf chlorophyll content and plant height by 11.93% and 21.89%, respectively. With increasing levels of soil contamination to lead, leaf chlorophyll index significantly decreased. In general, the results showed that soil inoculation with biological fertilizers can be reduce the harmful effects of lead in plant growth.

کلیدواژه‌ها [English]

  • Contaminated soils
  • Lead (Pb)
  • Mycorrhizal fungi
  • Phosphate solubilizing bacteria
  • Zea mays

 

Abbaspour, A., Kalbasi, M., Haj Rasooliha, SH. & Golchin, A. (2010). Survey of contamination of some Iranian agricultural soils with cadmium and lead, 13th Congress of Soil Science, Tehran-Soil Conservation and Watershed Research Center. University of Tehran. (in Persian)

Aliasgharzad, N., Neyshabouri, M. & Salimi, G. (2006). Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, 61(19), S324-S328. https://doi.org/10.2478/s11756-006-0182-x.

Amanifar, S., Asgharzadeh, N.A., Najafi, N., Ostan, Sh. V. & Bolandnazar, S. (2011). Effect of mycorrhizal fungi on lead phytoremediation by sorghum (Sorghum bicolor L.). Water and Soil Science, 22, 16-1. (in Persian)

Andrade, S.A.L., Abreu, C.A., De Abreu, M.F. & Silveira, A.P.D. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123-131. https://doi.org/10.1016/j.apsoil.2003.11.002

Ansari, A., Razmjoo, J., Karim Majani, H. & M., Zarei, (2014). Effect of mycorrhizal inoculation and pre-treatment with salicylic acid at different levels of drought on morphological factors on Brassica napus. Journal of Crop Production and Processing, 4(12), 181-194. (in Persian)

Auge, R. M. (2011). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3-42. https://doi.org/10.1007/s005720100097

Bagayoko, M., George, E., Romheld, V. & Buerkert, A. (2000). Effect of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. The Journal of Agricultural Science, 135(4), 399-407. DOI: https://doi.org/10.1017/S0021859699008254

Bashan, Y. & Holguin, G. (1997). Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43(2), 103-121. DOI: 10.1139/m97-015

Boonyapookana, B., Parkpian, P., Techapinyawat, S., Delaune, R.D. & Jugsujinda, A. (2005). Phytoaccumulation of lead by Sunflower (Helianthus annus), Tobacco (Nicotiana tabacum), and Vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health, 40(1), 117-137. https://doi.org/10.1081/ESE-200033621

Casson, S. A. & Lindsey, K. (2003). Genes and signalling in root development. New Phytologist, 158(1), 11-38. https://doi.org/10.1046/j.1469-8137.2003.00705.x

Chen, B.D., Li, X.L., Tao, H. Q., Christie, P. & Wong, M.H. (2003). The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 50(6), 839-846. DOI: 10.1016/s0045-6535(02)00228-x

              Dalvand, M., Hamidian, A. H., Zare Chahouki, M. A., Motesharrezadeh, B., Mirjalili, A. A. & Esmaeilzadeh, E. (2015). Determination of the concentration of heavy metals (Cu, Pb, Zn and Mn) in shoots of Artemisia sp. in natural lands of Darreh Zereshk copper mine, Taft, Yazd. Journal of Range and Watershed Management, 8(6), 219-229. (in Persian)

Dehghani Mashkani, M.R., Naghdi Badi, H., Darzi, M.T., Mehrafarin, A., Rezazadeh, Sh. & Kadkhoda, Z. (2011). The Effect of Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Shirazian Babooneh (Matricaria recutita L.). Journal of Medicinal plants, 2(38), 35-48. (in Persian)

Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28(2-4), 85-90.

Fasihi, M. M., Shmshiri, H. & Rousta, R. (2013). Effect of Arbuscular Mycorrhizal Fungus (Glomus moseae) on Vegetative Growth of Greenhouse Cucumber Plant of Nahid Cultivar (NIZ 51 484) at Different Levels of Sodium Bicarbonate. Journal of Science and Technology of Greenhouse Culture, 5 (17), 62-53. (in Persian)

Gajewska, E., Słaba, M., Andrzejewska, R. & Skłodowska, M. (2006). Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regulation, 49(1), 95-103. doi:10.1007/s10725-006-0018-2

Gee, G. W. & Bauder, J. W., (1986). Particle-size analysis. Methods of soil analysis: Part 1 Physical and Mineralogical Methods, Soil Science Society of America. Inc., Madison, WIS, USA.

Gildon, A.A. & Tinker, P.B. (2000). Interactions of vesicular‐arbuscular mycorrhizal infection and heavy metals in plants. Journal of New Phytologist, 95(2), 247-261. https://doi.org/10.1111/j.1469-8137.1983.tb03491.x

Glick, B. R., Penrose, D. M. & Li, J. (2003). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63-68. DOI: 10.1006/jtbi.1997.0532

Gonzalez-Guerrero, M., Azcon-Aguilar, C., Mooney, M., Valderas, A., MacDiarmid, C. W., Eide, D.J. & Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 42(2), 130-140. DOI: 10.1016/j.fgb.2004.10.007.

Hall, J.L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11. https://doi.org/10.1093/jexbot/53.366.1

Han, S. H., Kim, D. H. & Lee, J. C. (2011). Effects of the ectomycorrhizal fungus Pisolithus tinctorius and Cd on physiological properties and Cd uptake by hybrid poplar Populusalba × glandulosa. Journal of Ecology and Environment, 34(4), 393-400.

Hanson, W.C. (1950). The photometric determination of phosphorus in fertilizers using the phosphovanado‐molybdate complex. Journal of the Science of Food and Agriculture, 1(6), 172-173. https://doi.org/10.1002/jsfa.2740010604

Joner, E. & Leyval, C. (2000). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils, 33(5), 351-357. https://doi.org/10.1007/s003740000331

Kapoor, A. & Viraraghavan, T. (1995). Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53(3), 195-206. https://doi.org/10.1016/0960-8524(95)00072-M

Karlidag, H., Esitken, A., Turan, M. & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 114(1), 16-20. DOI: 10.1016/j.scienta.2007.04.013

Khan, A. G. (2006). Mycorrhizoremediation an enhanced form of phytoremediation. Journal of Zhejiang University Science B, 7(7), 503-514. doi: 10.1631/jzus.2006.B0503

Kitson, R.E. & Mellon, M.G. (1944). Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Journal of Industrial & Engineering Chemistry Analytical Edition, 16(6), 379-383. https://doi.org/10.1021/i560130a017

Kumar, P. N., Dushenkov, V., Motto, H. & Raskin, I. (1995). Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils. Environmental Science and Technol, 29(5), 1232-1238. DOI: 10.1021/es00005a014

Kungu, J.B., Lasco, R., Delacruz, L., Delacruz, R. & Husain, T. (2010). Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5), 2217-2224.

Liud, J., Li, K., Xu, J., Zhang, Z., Ma, T., Lu, X., Yang, J.H. & Zhu, Q. (2010). Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165(4), 793-802. https://doi.org/10.1016/S0168-9452(03)00273-5

Matamoros, M. A., Baird, L .M. & Escuredo, P. R. (2000). Stress-induced legume root nodule senescence: physiological, biochemical and structural alterations. Plant Physiology, 121(1), 97-112. DOI: https://doi.org/10.1104/pp.121.1.97

McGrath, S. P., Zhao, F. J. & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232(1-2), 207-214. https://doi.org/10.1023/A:1010358708525

Mclean, E.O. (1982). Soil pH and Lime Requirement. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 199-224.

Rostami, Gh., Gholamalizadeh Ahangar, A. & Lakzian, A. (2013). The effect of time on the distribution of lead forms in contaminated soil. Journal of Water and Soil, 5(27), 1057-1066. (in Persianin Persian)

Salt, D.E., Smith, R.D. & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology. 49(1), 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643

Sharma, P. & Dubey, R. S. (2005). Lead toxicity in plants. Plant Physiology. Brazilian Journal of Plant Physiology, 17(1), 35-52.

Smith, S.E. & Read, D.J. (2008). Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal Symbiosis, 45(3), 11-28. DOI: 10.1016/B978-012370526-6.50007-6

Tao, L. & Zhiwei, Z. (2005). Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Applied Soil Ecology, 29(2), 135-141. https://doi.org/10.1016/j.apsoil.2004.11.005

Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, http://dx.doi.org/10.1155/2011/93916.

Tessier, A., Campbell, P.G.C. & Bisson M. (1979). Sequential Extraction procedure for the speciation of particular trace metals. Analytical Chemistry, 51(7), 1-22.

Ugolini, F., Tognetti, R., Raschi, A. & Bacci, L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerationson the trees distance from traffic. Urban Forestry and Urban Greening, 12(4), 576-584. https://doi.org/10.1016/j.ufug.2013.05.007

Weber, F., Kowarik, I. & Säumel, I. (2018). Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 42(2), 193-199. DOI: 10.1016/s0045-6535(00)00125-9

Wong, C.C., Wu, S.C., Kuek, C., Khan, A.G. & Wong, M.H. (2007). The role of mycorrhizae associated with vetiver grown in Pb‐/Zn‐contaminated soils: greenhouse study. Restoration Ecology, 15(1), 60-67. https://doi.org/10.1111/j.1526-100X.2006.00190.x

Wu, Q.S. & Xia, R.X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425. https://doi.org/10.1016/j.jplph.2005.04.024

Yousefirad, M. & Karbalaei Esmaeil, M.R. (2010). Effects of mycorrhizal fungi on uptake of macronutrients and some morphological traits in sunflower cultivars (Heliantus annus L.). Second National Conference on Agriculture and Sustainable Development: Opportunities and Challenges Facing. Pp: 1-13. (in Persian)