نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به‌منظور بررسی تأثیر تنش کم­آبی و سطوح مختلف اسید هیومیک بر شاخص­های فیزیولوژیکی و عملکرد گوجه‌فرنگی، آزمایشی به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار، در مزرعه پژوهشی دانشگاه زنجان در سال 1395 انجام شد. تیمارهای آزمایشی شامل آبیاری در سه سطح (60، 80 و 100 درصد نیاز آبی گیاه) و محلول­پاشی اسید هیومیک در چهار سطح (صفر، 100، 200 و 300 میلی­گرم در لیتر) بودند. نتایج نشان داد که تنش کم­آبیاری به­طور معنی­داری هدایت روزنه­ای، شاخص پایداری غشا، محتوای نسبی آب برگ، کلروفیل و عملکرد بوته را کاهش داد و باعث افزایش مقدار پرولین و فعالیت آنزیم پراکسیداز شد. کاربرد اسید هیومیک فعالیت آنزیم پراکسیداز، محتوای نسبی آب برگ، مقدار پرولین، کلروفیل و شاخص پایداری غشا را تحت آبیاری نرمال و کم­آبیاری افزایش داد و باعث کاهش هدایت روزنه­ای گردید. بیشترین میزان فعالیت آنزیم پراکسیداز (207/1 واحد بر گرم وزن برگ تازه در دقیقه) و پرولین (5/11 میلی­گرم در گرم بافت تازه) با کاربرد 200 میلی­گرم در لیتر اسید هیومیک در تیمار کم­آبیاری با 60 درصد نیاز آبی حاصل شد. بیشترین میزان محتوای نسبی آب برگ (6/78 درصد) و شاخص پایداری غشا (01/70 درصد) به‌ترتیب با کاربرد 300 و 200 میلی­گرم بر لیتر اسید هیومیک در شرایط آبیاری 100 درصد نیاز آبی گیاه حاصل شد. حداکثر عملکرد بوته تحت آبیاری 100 درصد با کاربرد 200 میلی­گرم در لیتر اسید هیومیک به­دست آمد. با توجه به نتایج، کاربرد 200 میلی­گرم در لیتر اسید هیومیک جهت بهبود شاخص­های فیزیولوژیکی و عملکرد میوه گوجه­فرنگی پیشنهاد می­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of humic acid on physiological and biochemical indices and yield of tomato under deficit irrigation

نویسندگان [English]

  • Shilan Aslani 1
  • Taher Barzegar 2
  • Jaefar Nikbakht 3

1 Former M.Sc. Student, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

چکیده [English]

In order to study the effect of water deficit stress and foliar spray of humic acid (HA) on physiological and yield traits of tomato, an experiment was carried out in a split plot based on randomized complete block design with three replications at the research filed of University of Zanjan, in 2016. Treatments consisted arrangement of three irrigation levels (starting irrigation at 100, 80 and 60 percent ETc) and 4 levels of HA (0, 100, 200 and 300 mg.l-1). The results showed that deficit irrigation significantly decreased stomatal conductance, membrane stability index, leaf relative water chlorophyll a and b content and plant yield, and increased the proline content and proxidase activity. Treatment of HA enhanced proxidase activity, leaf relative water content, proline, chlorophyll, membrane stability index and plant yield under normal and deficit irrigation, and decreased stomatal conductance. The highest peroxidase activity (1.207 uints.g-1FW.Min-1) and proline content (11.5 mg.gFW-1) was obtained with treatment of HA 200 mg L-1 under irrigation 60 percent ETc. Also, maximum leaf relative water content (78.6 percent) and membrane stability index (70.01 percent) was achieved in HA 300 and 200 mg L-1, respectively under irrigation 100 percent ETc. The maximum plant yield was obtained with application of HA 200 mg L-1 under irrigation 100 %ETc. According to the results, application of HA 200 mg L-1 can be proposed to improve physiological traits and increase fruit yield.

کلیدواژه‌ها [English]

  • Foliar spray
  • Membrane stability index
  • proline
  • Proxidase
  • Stomatal conductance
Abdalla, M. M., & El-Khoshiban, N. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars. Journal of Applied Sciences Research, 3(12), 2062-2074.
Abdel-Mawgoud, A. M. R., El-GreadlyHelmy, N. H. M., Helmy, Y. I., & Singer, S. M. (2007). Responses of tomato plants to different rates of humic based fertilizer and NPK fertilization. Journal of Applied Sciences Research, 3(2), 169-174.
Afroz, A., Chaudhry, Z., Rashid, U., Khan, M. R., & Ali, G. M. (2010). Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. African journal Biotechnology, 9(24), 3634-3644.
Ahmadizadeh, M. (2013). Physiological and agro-morphological response to drought stress. Middle-East Journal of Scientific Research, 13(8), 998-1009. DOI: 10.5829/idosi.mejsr.2013.13.8.3531.
Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121.
Asri, F. O., Demirtas, E. L., & Ari, N. (2015). Changes in fruit yield, quality and nutrient concentrations in response to soil humic acid applications in processing tomato. Bulgarian Journal of Agricultural Science, 21(3), 585-591.
Barzegar, T., Moradi, P., Nikbakht, J., & Ghahremani, Z. (2016). Physiological response of okra cv. Kano to foliar application of putrescine and humic acid under water deficit stress. International Journal of Horticultural Science and Technology. 3(2), 187-197. DOI: 10.22059/IJHST.2017.213448.147.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water- stress studies. Plant and Soil. 39(1), 205- 207.
Berbara, R. L., & García, A. C. (2014). Humic substances and plant defense metabolism. In Physiological mechanisms and adaptation strategies in plants under changing environment (Vol. 1, pp. 297-319). Springer Science, New York. DOI 10.1007/978-1-4614-8591-9_11.
Bronick, E. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma 124(1-2): 3-22. DOI: 10.1016/j.geoderma.2004.03.005.
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2(11), 764-775.
Da-Bing, X., Qiu-Jun, W. A., Yun-Cheng, W. U., Guang-Hui, Y. U., Qi-Rong, S. H., & Huang, Q. W. (2012). Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere. 22(6), 815-824. DOI: 10.1016/S1002-0160(12)60067-8.
 Demiralay, M., Saglam, A., & Kadioglu, A. (2013). Salicylic acid delays leaf rolling by inducing antioxdant enzymes and modulating osmoprotectant content in Ctenanthe setosa under osmotic stress. Turkish Journal of Biology, 37(1), 49-59. DOI: 10.3906/biy-1205-16.
 
El-Bassiony, A. M., Fawzy, Z. F., Abd El-Baky, M. M. H., & Mahmoud Asmaa, R. (2010). Response of snap bean plants to mineral fertilizers and humic acid application. Research Journal of Agricultural and Biological Science, INSInet Publication, 6(2), 169-175.
Fan, H. F., Ding, L., Du, C. X., & Wu, X. (2014). Effect of short-term water deficit stress on antioxidative systems in cucumber seedling roots. Botanical studies, 55(1), 46. DOI: 10.1186/s40529-014-0046-6
Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z., & Zheng, C. S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177(2), 118-123. DOI: 10.1016/j.scienta.2014.05.010.
FAO (2017). FAOSTAT, agricultural database. http:// apps. Fao. Org.
Florina, F., Giancarla, V., Cerasela, P., & Sofia, P. (2013). The effect of salt stress on chlorophyll content in several Romanian tomato varieties. Journal of Horticulture, forestry and Biotechnology, 17(1), 363-367.
García, A. C., Berbara, R. L. L., Farías, L. P., Izquierdo, F. G., Hernández, O. L., Campos, R. H., & Castro, R. N. (2012). Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology, 11(13), 3125-3134. DOI: 10.5897/AJB11.1960.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. DOI: 10.1016/j.plaphy.2010.08.016.
Hammad, S. A., & Ali, O. A. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145. DOI: 10.1016/j.aoas.2014.06.018.
Harb, A., Krishnan, A., Ambavaram, M. M., & Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. plant physiology, 154(3), 1254-1271. DOI: 10.1104/pp.110.161752.
Karimi, E., Tadayyon, A., & Tadayon, M. R. (2016). The effect of humic acid on some yield characteristics and leaf proline content of safflower under different irrigation regimes. Journal of Crops Improvement (Journal of Agriculture) Production, 18(3), 609-623. (In Persian).
Kavas, M., Baloğlu, M. C., Akça, O., Köse, F. S., & Gökçay, D. (2013). Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37(4), 491-498. DOI:10.3906/biy-1210-55.
Khan, M. I. R., Asgheer, M., Fatma, M., Per, T. S., & Khan, N. A. (2015). Drought stress vis a vis plant functions in the era of climate change. Climate Change and Environmental Sustainability, 3(1), 13-25. DOI:10.5958/2320-642X.2015.00002.2.
Mahmoudnia, M. M., Farsi, M., Marashi, S., & Ebadi, P. (2013). Physiological response to drought stress in four species of tomato. Journal of Horticultural Science, 26(4), 409-404. ((In Persian)
Márquez-García, B., Horemans, N., Cuypers, A., Guisez, Y., & Córdoba, F. (2011). Antioxidants in Erica andevalensis: A comparative study between wild plants and cadmium-exposed plants under controlled conditions. Plant Physiology and Biochemistry, 49(1), 110-115. DOI: 10.1016/j.plaphy.2010.10.007.
Mujdeci, M., Senol, H., Cakamakci, T., & Celikok, P. (2011). The effects of different soil water matric suction on stomatal resistance. Journal of Food Agriculture and Environment, 99(3), 1027-1029.
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34, 1527–1536. DOI: 1016/S0038-0717(02)00174-8.
Nasibi, F., Manouchehri Kalantari, K. h., & Yaghoobi, M. M. (2012). Comparison the effects of sodium nitroprusside and arginine pretreatment on some physiological responses of tomato plant (Lycopersicun esculentum L.) under water stress. Iranian Journal of Biology, 24(6), 833-847. (In Persian).
Nikbakht, A., Kafi, M., Babalar, M., Yi Ping, X., Luo. A., & Etemadi. N. (2008). Effect of humic acid on plant growth, nutrient uptake and postharvest life of gerbera. Journal of Plant Nutrition, 31(12), 2155-2167. DOI: 10.1080/01904160802462819.
Noorani Azad, H., Hassan Poor, A., Bakhshi Khaniki, G. H., & Ebrahimi, M. A (2016). Evaluation of the effect of Azomite fertilizer on the growth and some physiological traits of two tomato (Lycopersicun esculentum L.) cultivars under drought stress. Iranian Journal of Physiology, 6(4), 1835-1842. (In Persian).
Orabi, S.A., Salman, S. R., & Shalaby, M. A. (2010). Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. Journal of Agricultural Sciences, 6(3), 252-259.
Osman, A. S., & Rady, M. M. (2014). Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. The Journal of Horticultural Science and Biotechnology, 89(3), 237-244. DOI: 10.1080/14620316.2014.11513074.
Ozkur, O., Ozdemir, F., Bor, M., & Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and experimental botany, 66(3), 487-492. DOI: 10.1016/j.envexpbot.2009.04.003.
Rasaei, B., Ebadi, M., Amiri, R., & Resaei, A. (2012). Physiological effects of application of humic acid and complementary irrigation on green peas with chickpea (Pisium Sativum L.) cultivar. 12th Iranian Crop Sciences Congress, 4 september, Karaj, Iran. (In Persian).
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1), 105-111.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9.
Sánchez-Rodríguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., & Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40. DOI: 10.1016/j.plantsci.2009.10.001.
Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African journal of botany, 95, 24-31.‏ DOI: 10.1016/j.sajb.2014.08.005.
Sibomana, I. C., Aguyoh, J. N., & Opiyo, A. M. (2013). Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill) plants. Global Journal of Bio-science and Biotechnology, 2(4), 461-466.
Signarbieux, C., & Feller, U. (2011). Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environmental and Experimental Botany. 71(2), 192-197. DOI: 10.1016/j.envexpbot.2010.12.003.
Simsek, M., & Comlekcioglu, N. (2011). Effects of different irrigation regimes and nitrogen levels on yield and quality of melon (Cucumis melo L.). African Journal of Biotechnology, 10(49), 10009-10018. DOI: 10.5897/AJB11.1601.
Vaziri, Z. H., Salamat, A., Ansari, M., Masihi, M., Heydari, N., & Dehghani sanich, H. (2008). Evapotranspiration plant (water consumption guidelines for plants) (Translation). Publications of the National Committee of Irrigation and Drainage, printing, Tehran. (In Persian).
Wang, F., Kang, S., Du, T., Li, F., & Qiu, R. (2011). Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98(8), 1228-1238. DOI: 10.1016/j.agwat.2011.03.004.
Waraich, E. A., Ahmad, R., & Ashraf, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-777.
Yildirim, E. (2007). Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 57(2), 182-186. DOI: 10.1080/09064710600813107.
Zandonadi, D. B., Canellas, L. P., & Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225(6), 1583-1595. DOI: 10.1007/s00425-006-0454-2.