Abdalla, M. M. & El-Khoshiban, N. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars. Journal of Applied Sciences Research, 3(12), 2062-2074.
Ahmad, R., Kim, M. D., Back, K.-H., Kim, H.-S., Lee, H.-S., Kwon, S.-Y. & Kwak, S.-S. (2008). Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Reports, 27(4), 687-698.
Ahmadi, E. & Baker, A. (2000). Stomat and non-stomat photosynthis limiting factor under drought stress. Iranian Journal of Agriculture Research, 31, 813-825.
Ashraf, M. & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216.
Barrs, H. & Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413-428.
Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M. & Sánchez-Andreu, J. (2008). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Paper presented at the IV Balkan Symposium on Vegetables and Potatoes 830.
Chen, T. H. & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505.
Foolad, M., Subbiah, P., Kramer, C., Hargrave, G. & Lin, G. (2003). Genetic relationships among cold, salt and drought tolerance during seed germination in an interspecific cross of tomato. Euphytica, 130(2), 199-206.
Garcia, A., Marcelis, L., Garcia-Sanchez, F., Nicolas, N. & Martínez, V. (2007). Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply. Biologia Plantarum, 51(4), 707-712.
Hsieh, T.-H., Lee, J.-t., Charng, Y.-y. & Chan, M.-T. (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology, 130(2), 618-626.
Ierna, A. & Mauromicale, G. (2006). Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment. Agricultural Water Management, 82(1-2), 193-209.
Jokinen, K., Somersalo, S., Mäkelä, P., Urbano, P., Rojo, C., González, J., ... Moya, M. (1998). Glycinebetaine from sugar beet enhances the yield of ‘field-grown’tomatoes. Paper presented at the VI International Symposium on Processing Tomato & Workshop on Irrigation & Fertigation of Processing Tomato 487.
Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V. & Hüner, N. P. (2015). Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(2), 221-235.
Mahmoudnia, M. M., Farsi, M., Marashi, S. & Ebadi, P. (2013). Physiological response to drought stress in four species of tomato. Journal of Horticultural Science, 26(4), 7.
Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E. & Somersalo, S. (1998a). Foliar application of glycinebetaine—a novel product from sugar beet—as an approach to increase tomato yield. Industrial Crops and Products, 7(2-3), 139-148.
Mäkelä, P., Munns, R., Colmer, T., Condon, A. & Peltonen-Sainio, P. (1998b). Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology, 25(6), 655-663.
Mäkelä, P., Peltonen-Sainio, P., Jokinen, K., Pehu, E., Setälä, H., Hinkkanen, R. & Somersalo, S. (1996). Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Science, 121(2), 221-230.
Makhdum, I. & Shababuddin, M. (2006). Effect of different doses of glycine betaine and time of spray application on yield of cotton (Gossypium Hirsutum L.). Journal of Research (Science), 17(4), 241-245.
Nouri, A., Nezami, A., Kafi, M. & Hassanpanah, D. (2016). Evaluation of water deficit tolerance of 10 potato (Solanum tuberosum L.) cultivars based on some physiological traits and tuber yield in Ardabil region. . Journal of Crop Ecophysiology, 10(1), 234-268.
Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86.
Park, E.-J., Jeknic, Z. & Chen, T. H. (2006). Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant and Cell Physiology, 47(6), 706-714.
Park, E.-J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N. & Chen, T. H. H. (2004). Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. The Plant Journal, 40(4), 474-487. doi:10.1111/j.1365-313X.2004.02237.x
Park, E. J., Jeknić, Z., Chen, T. H. & Murata, N. (2007). The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnology Journal, 5(3), 422-430.
PARK, E. J., JEKNIĆ, Z., PINO, M. T., Murata, N. & CHEN, T. H. H. (2007). Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant, Cell & Environment, 30(8), 994-1005.
Quan, R., Shang, M., Zhang, H., Zhao, Y. & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2(6), 477-486.
Rontein, D., Basset, G. & Hanson, A. D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 4(1), 49-56.
Sairam, R. & Srivastava, G. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70.
Sajjadinia, A., Ershadi, A., Hokmabadi, H., Khayyat, M. & Gholami, M. (2010). Gas exchange activities and relative water content at different fruit growth and developmental stages of on and off cultivated pistachio trees. Australian Journal of Agricultural Engineering, 178(1), 1-6.
Sakamoto, A. & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 25(2), 163-171.
Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., ... Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40.
Serraj, R. & Sinclair, T. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25(2), 333-341.
Subbarao, G., Levine, L. H., Stutte, G. W. & Wheeler, R. M. (2001). Glycinebetaine accumulation: its role in stress resistance in crops plants. Handbook of plant and crop physiology. Marcel Dekker, New York, 881-907.
Sulpice, R., Gibon, Y., Cornic, G. & Larher, F. R. (2002). Interaction between exogenous glycine betaine and the photorespiratory pathway in canola leaf discs. Physiologia Plantarum, 116(4), 460-467.
Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T. H. & Murata, N. (2003). Enhanced formation of flowers in salt‐stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. The Plant Journal, 36(2), 165-176.
Teixeira, W. F., Fagan, E. B., Soares, L. H., Umburanas, R. C., Reichardt, K. & Neto, D. D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science, 8, 327.
Xing, W. & Rajashekar, C. (1999). Alleviation of water stress in beans by exogenous glycine betaine. Plant Science, 148(2), 185-192.
Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208(15), 2819-2830.
Yang, X. & Lu, C. (2005). Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiologia Plantarum, 124(3), 343-352.