کمی‌سازی واکنش جوانه‌زنی توده‌های مختلف ریحان به دما

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران

2 دانشیار، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران

3 استادیار، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران

4 استادیار گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران

چکیده

به‌منظور بررسی واکنش جوانه‌زنی بذور گیاه دارویی ریحان (.Ocimum basilicum L) به دما و تعیین دماهای کاردینال برای درصد و سرعت جوانه‌زنی، آزمایشی به‌صورت تجزیه‌ی مرکب در قالب طرح کاملاً تصادفی با چهار تکرار و شش سطح دمایی (8، 15، 20، 25، 30 و35 درجه‌ی سانتی‌گراد) در آزمایشگاه تکنولوژی بذر پردیس ابوریحان دانشگاه تهران به اجرا درآمد. در این تحقیق 22 توده‌ی ریحان شامل تهران (سبز)، شهرری (سبز)، بیرجند (سبز)، بیرجند (بنفش)، شیراز (سبز)، زابل (سبز)، زاهدان1 (سبز)، زاهدان2 (سبز)، کرمانشاه (سبز)، پیشوا (سبز)، پیشوا (بنفش)، ملایر (سبز)، خاش (سبز)، تنکابن محلی (سبز)، اصفهان 2 (سبز)، اصفهان 2 (بنفش)، اصفهان 3 (سبز)، اصفهان 4 (سبز)، مشهد (سبز)، ناپولتا آمریکایی (سبز)، جینویس ایتالیایی (سبز) و سوئیس (سبز) مورد ارزیابی قرارگرفتند. بر اساس نتایج تجزیه واریانس اثر دما، ژنوتیپ و اثرات متقابل آن‌ها بر درصد و سرعت جوانه‌زنی در سطح 5 درصد معنی دار بود. بازه‌ی دمای بهینه برای درصد و سرعت جوانه‌زنی به‌ترتیب 78/27-10/19و 89/29-32/20 درجه‌ی سانتی‌گراد به‌دست آمد. در اکثر توده‌ها بالاترین سرعت جوانه‌زنی در دمای 25 درجه‌ی سانتی‌گراد مشاهده شد. بین توده‌های مورد ارزیابی در این تحقیق، توده اصفهان 3 در همه‌ی دماها بالاترین سرعت جوانه‌زنی را به خود اختصاص داد. نتایج آزمایش نشان داد که واکنش درصد و سرعت جوانه‌زنی به دما به‌ترتیب با تابع بتا و دوتکه‌ای توصیف خوبی داشتند و با استفاده از این دو مدل می‌توان دماهای کاردینال را برای ریحان تعیین کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantifying the germination reaction of different Basil masses to temperature

نویسندگان [English]

  • Sahar Binesh 1
  • Gholam abbas Akbari 2
  • Elias Soltani 3
  • Fatmeh Amini 4
1 M.Sc. Student of Agronomy, Department of Crop Science and Plant Breeding, Aboureyhan Faculty, University of Tehran, Pakdasht, Tehran, Iran
2 Associate Professor, Department of Crop Science and Plant Breeding, Aboureyhan Faculty, University of Tehran, Pakdasht, Tehran, Iran.
3 Assistant professor, Department of Crop Science and Plant Breeding, Aboureyhan Faculty, University of Tehran, Pakdasht, Tehran
4 Assistant Professor, Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran
چکیده [English]

In order to examine the germination response of basil medicinal plant’s seeds (Ocimum basilicum L.) to temperature and determination of cardinal temperatures for germination percentage and rate, a compound decomposition experiment was performed through a fully random design with four reptile and six thermal levels (8, 15, 20, 25, 30, and 35 degree centigrade) in seed technology laboratory of Abou-Reyhan campus in Univerity of Tehran. In this study, 22 Basil masses were evaluated including “Tehran”, Green Shahr-e-Rey”, “Green Birjand”, “Purple Birjand”, “Green Shiraz”, “Green Zabol”, “Zahedan”, “Green Zahedan”, “Kermanshah”, “Green Pishva”, “Purple Pishva”, “Green Malayer”, “Khash”, “Local green Tonekabon”, “Green Isfahan II”, “Purple Isfahan II”, “Green Isfahan III”, “Green Isfahan IV”, “Green Mash’had”, “American green Napolta”, “Italian Genovese”, and “Switzerland” . Based on the results of variance analysis, temperature impact, genotype, and their interaction on germination percent and germination rate was significant at the 5% level. Optimal range of temperature for germination percent and germination rate was obtained as 19.10-27.78 and 20.32-29.89 degrees centigrade, respectively. In most masses, the highest germination rate was observed at 25 degrees centigrade. Among all evaluated masses in current research, Isfahan III was appropriated the highest germination rate in all temperatures. The results of experiment showed that the response of germination percentage and germination rate to temperature was well described through Beta function and segmented function, respectively, and cardinal temperatures can be determined for Basil using these two models.

کلیدواژه‌ها [English]

  • Beta function
  • cardinal temperatures
  • Germination rate
  • model
  • Segmented function
پازکی ع، قاضی پیرکوهی م، شیرانی راد ا، بیگدلی و حبیبی د (1390)  تغییرات درصد و عملکرد اسانس گیاه دارویی ریحان (Ocimum basilicum L.) تحت تأثیر کاربرد نیتروژن، منیزیم و منگنز. یافته­های نوین کشاورزی. 6(1): 16-6.

پورعلی قهفرخی ف، قادری فر ف، سلطانی ا و پهلوانی م (1393) برآورد دماهای کاردینال پنبه (Gossypium hirsutum L.). اولین کنگره بین­المللی و سیزدهمین کنگره ملی علوم زراعت و اصلاح نباتات. 3-1.

تبریزی ل، نصیری محلاتی م و کوچکی ع (1383) ارزیابی حرارت‌های حداقل، بهینه و حداکثر جوانه‌زنی اسفرزه (Plantago ovata)و پسیلیوم (Plantago psyllium) مجله پژوهش‌های زراعی ایران، 2(2): 150-143.

خدابخشی ا، کامکار ب و خلیلی ن (1394) کمی‌سازی واکنش سرعت جوانه‌زنی گیاه دارویی مرزه به دما و پتانسیل آب با استفاده از مدل­های رگرسیون غیرخطی. به­زراعی کشاورزی. 17(1):240-299.

رضایی‌مودب ع و نبوی‌کلات م (1391) اثر کاربرد ورمی­کمپوست و کودهای زیستی بر عملکرد بذر و اجزای عملکرد ریحان (Ocimum basilicum L.). اکوفیزیولوژی گیاهان زراعی. 2(22): 157-150.

سلطانی ا (1392) کاربرد نرم­افزار SAS در تجزیه‌های آماری (برای رشته­های کشاورزی). انتشارات جهاد دانشگاهی (دانشگاه فردوسی مشهد)، مشهد. 184 صفحه.

سلطانی ا، اویسی م، سلطانی ا، گالشی س، قادری‌فر ف و زینلی ا (1393) مدل‌سازی جوانه‌زنی کلزای خودرو تحت تأثیر دما و پتانسیل آب: مدل هیدروترمال تایم. پژوهش علف­های هرز. 6(1):38-23.

قادری­فر ف و سلطانی ا (1394) ارزیابی جوانه‌زنی ارقام کنجد در واکنش به دما: تعیین دماهای مهم و مقاومت به دما. علوم گیاهان زراعی ایران. 46 (3): 483-473.

محمودی ع، سلطانی ا و بارانی ح (1387) واکنش جوانه‌زنی یونجه حلزونی (Medicago scutellata L.) به دما. تولید گیاهان زراعی. 1(1): 63-54.

Akramghaderi F, Soltani A and Sadeghipour HR (2008) Cardinal temperature of germination in medical pumpkin (Cucurbita pepo conver pepo var. styriaca), borago (Borago officinalis L.) and black cumin (Nigella sativa L.). Asian Journal of Plant Science. 2: 101-109.

Baskin CC and Baskin J M (2004)  A classification system for seed dormancy. Seed Science Research. 14(1): 1-16.

Bradford KJ (2002) Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50(2): 248-260.

Ditomaso J, and Erelyn AH (2007) Weeds of California and other Western States. Vol 1. Univesity of California Agriculture and Natural Resources Publication. 3488.

Evers GW (1991) Germination response of subterranean, berseem and rose clovers to alternating temperatures. Agronomy Journal. 83(6): 1000-1004.

Farzaneh S Soltani E Zeinali E and Ghaderi-Far F (2014) Screening Oilseed Rape Germination for Thermotolerance Using a Laboratory-Based Method. Seed Technology. 36(1): 15-27.

Hardegree SP and Winstral AH (2006). Predicting Germination Response to Temperature. II. Three-dimensional Regression, Statistical Gridding and Iterative-probit Optimization Using Measured and Interpolated-subpopulation Data. Annals of Botany. 98(2): 403-410.

Jame YW and Cutforth HW (2004) Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural For Meteorology. 124(3-4): 207-218.

Jami Al-Ahmadi M and Kafi M (2007) Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environments. 68(2): 308-314.

Khalid AK., Hendawy SF and El-Gezawy E (2006) Ocimum basilicum L production under organic farming. Research Journal of Agriculture and Biological Sciences. 2(1): 25-32.

Labra M, Miele M, Ledda B, Grassi F, Mazzei M and Sala F (2004). Morphological characterization essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science. 167(4): 725-731.

Soltani A, Robertson M J, Torabi B, Yousedi-Daz M and Sarparast R (2006) Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology. 138(1-4): 156-167.

Soltani E, Galeshi S, Kamkar B and Akramghaderi F (2008) Modeling seed aging effects on the response of germination to temperature in wheat. Seed Science and Biotechnology. 2(1): 32-36.

Soltani E, Soltani A, Galeshi S, Ghaderi-Far F and Zeinali E (2013) Seed Bank Modelling of Volunteer Oil Seed Rape: from Seeds Fate in the Soil To Seedling Emergence. Planta Dania. 31(2): 267-279.

Soltani A, Galeshi S, Zenial E and Lithify N (2002) Germination seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science Technology. 30(1): 51-60.

Seefeldt SS, Kidwell KK and Waller JE (2002) Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research. 75(1): 47-52.

SadrabadiHaghighi R and Sazevari G (2011) Evaluation of effect on Alhajipseudlhaji germination response to salinity and temperature. World Applied Sciences Journal. 13(1): 157-164.