بررسی رشد، عملکرد و پاسخ های فیزیولوژیکی هندوانه ابوجهل تحت شرایط تنش کم آبیاری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانش آموخته دکتری، گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

4 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به منظور بررسی اثر تنش کم آبیاری بر رشد، عملکرد و شاخص‌های فیزیولوژیکی هندوانه ابوجهل، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار انجام شد. سطوح آبیاری شامل 100 درصد نیاز آبی گیاه و دو سطح کم آبیاری 70 و 50 درصد نیاز آبی گیاه بود. نتایج نشان داد که تنش کم‌آبیاری، رشد و عملکرد میوه را به طور معنی‌داری کاهش داد. کمترین سطح برگ، طول بوته، تعداد میوه و عملکرد در تیمار کم آبیاری 50 درصد حاصل شد. با افزایش تنش کم‌آبیاری، محتوای نسبی‌آب برگ و محتوای کلروفیل کاهش یافت. درصد نشت‌یونی، فعالیت آنزیم پراکسیداز و تجمع پرولین در پاسخ به افزایش تنش کم‌آبیاری به طور معنی‌داری افزایش یافت، ولی بین تیمار آبیاری 100 درصد و 70 درصد تفاوت معنی‌داری مشاهده نشد. در تیمار کم آبیاری 70 درصد، اگرچه عملکرد میوه 5/15 درصد کاهش یافت ولی در مصرف آب 30 درصد صرفه‌جویی شد و کارآیی مصرف آب 8/16 درصد افزایش یافت. بنابراین در شرایط کمبود آب آبیاری، توصیه می‌شود که گیاهان هندوانه ابوجهل با 70 درصد نیاز آبی گیاه آبیاری شود زیرا علاوه بر تولید عملکرد نسبتاً مشابه آبیاری 100 درصد، در مصرف آب صرفه‌جویی زیادی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The evaluate of growth, yield and physiological responses of bitter apple (Citrullus colocynthis) under deficit irrigation stress condition

نویسندگان [English]

  • Jasem Parkhideh 1
  • Taher Barzegar 2
  • Fattemeh Nekonam 3
  • Jafar Nikbakht 4
1 M.Sc. Student, Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
3 Former Ph. D. Student, Department of Horticultural Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
4 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

To evaluate the effect of deficit irrigation stress on growth, yield and physiological traits of bitter apple (Citrullus colocynthis), the experiment was conducted with three replications. Irrigation levels were 100% ETc and two deficit irrigation 70% and 50% ETc. The results showed that deficit irrigation stress significantly reduced growth and fruit yield. The lowest leaf area, plant length, fruit number per plant and fruit yield was obtained in deficit irrigation 50% ETc. Relative water content and chlorophyll content significantly decreased in response to increase in deficit irrigation stress. The increase in deficit irrigation stress resulted in higher peroxidase activity, electrolyte leakage and proline accumulation, although there was no significant difference between irrigation 100 and 70% ETc. Deficit irrigation 70% ETc saved 30% of irrigation water with a 15.5% reduction in fruit yield, so caused 16.8% increase in water use efficiency. Therefore, under limited irrigation water, it is recommended to irrigate bitter apple plants at 70% ETc irrigation to produce not only the same yields, approximately, but also to save more of water as compared to 100% ETc treatment.

کلیدواژه‌ها [English]

  • fruit yield
  • Leaf area
  • proline
  • Stomata conductance
  • Water use efficiency

برزگر ط، دلشاد م، مجدآبادی ع، کاشی ع و قشقایی ژ (1390) اثر تنش کم‌آبی بر رشد، عملکرد و برخی شاخص‌های فیزیولوژیکی خربزه ایرانی. مجله علوم باغبانی ایران. 42 (4): 357-363.  

زینلی ن، دلشاد م، کاشی ع و حق بین ک (1391) اثر تنش کم‌آبی بر عملکرد و برخی خصوصیات کیفی سه ژنوتیپ دستنبو و طالبی ایران. مجله علوم باغبانی. 43 (4): 403-410.  

محمودنیا-میمند م، فارسی م، مرعشی ح و عبادی پ (1391) بررسی پاسخ‌های فیزیولوژیکی چهار گونه گوجه‌فرنگی به تنش خشکی. مجله علوم باغبانی. 26(4): 409-416.  

وزیری ژ، سلامت ع، انصاری م، مسچی م، حیدری ن و دهقانی‌سانیچ ح (1387) تبخیر-تعرق گیاهان (دستورالعمل محاسبه آب مورد نیاز گیاهان) (ترجمه). انتشارات کمیته ملی آبیاری و زهکشی ایران، چاپ اول، تهران.

لطفی ه، برزگر ط و ربیعی و (1395) اثر تنش کم‌آبی بر عملکرد، شاخص‌های فیزیولوژی و بیوشیمیایی دو توده طالبی بومی ایران. زیست‌شناسی گیاهی ایران. 8 (28): 1-14.  

Abdul Jaleel C, Manivannan P, Wahid A, Farooq, Somasundaram R and Panneerselvam (2009) Drought stress in plants. A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology. 11: 100-105

Apel Kand Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Plant Biology. 55: 373-399.

Arnon AN (1967) Method of extraction of chlorophyll in the plants. Agronomy Journal. 23: 112-121.

Aydin A, Kant C and Turan M (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research. 7(7): 1073-1086.

Bates LW, Aldren RPand Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.

Ben Hamed K, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulators. 53: 185-194.

Bybordi A (2012) Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal. 9(4): 1092-1101.

Cabello MJ, Castellanos MT, Romojaro F, Martinez-Madrid Cand Ribas F (2009) Yield and quality of melon grown under different irrigation and nitrogen rates. Agricultural Water Management. 96: 866-874.

Castilla Nand Lopez-Galvez J (1994) Vegetable crop responses in improved low-cost plastic greenhouses. Journal of Horticulture Science. 69: 915-921.

15.Chance Band Maehly AC (1955) Assay of catalase and peroxidases. Methods in Enzymology. 2: 764-775.

Dane F, Liu Jand Zhang C (2006) Phylogeography of the bitter apple (Citrullus colocynthis). Genetic ResourcesandCrop Evolution. 54: 327-336.

Dat J, Vandenabeele S, Vranova' E, Van Montagu M, Inze' Dand Van Breusegem F (2000) Dual action of active oxygen species during plant stress responses. Cellular and Molecular Life Science. 57: 779-795.

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJand Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science. 309(5734): 630-633.

Fabeiro C, Martin de Santa Olalla Fand De Juan JA (2002) Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agricultural Water Management. 54:93-105.

Farooq M, Somasundaram Rand Panneerselvam R (2012) Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural and Biological Engineering. 11: 100-105.

Ferus P, Ferus Ova Sand Kona J (2011) Water dynamics and productivity in dehydrated watermelon plants as modified by red polyethylene mulch. Turkish Journal of Agriculture and Forestry. 35: 391-402.

Foyer CHand Noctor G (2005). Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant, CellandEnvironment. 28: 1056-1071.

Guo Z, Ou W, Lu Sand Zhong Q (2006) Deferential response of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry. 44: 828-836.

Hanson ADand Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Biology. 33: 163-203.

Inze Dand Van Montagu M (1995) Oxidative stress in plants. Current Opinion in Biotechnology. 6: 153-158.    

Jeffries P, Gianinazi S, perotto S, Turnau Kand J M Barea (2003) The contribution of Arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology Fertility Soils. 37: 1-16.

Kavas M, Cengiz Mand Akca O (2013) Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings'. Turkish Journal of Biology. 37: 491-498.

Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Sciences. 8 (3): 1051-1060

Kusvuran S, Dasgan HYand Abak K (2011) Responses of different melon genotypes to drought stress. Journal of Agriculture Science. 21: 209-219.

Leskovar DI, Bang H, Crosby KM, Maness N, Franco JAand P Perkins-Veazie (2004) Lycopene, carbohydrates, ascorbic acid and yield components of diploid and triploid watermelon cultivars are affected by deficit irrigation. Journal of Horticultural Science and Biotechnology.79: 75-81.

Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermos stability in wheat plants. Journal of Experimental Botany. 50: 107-153.

Madhava Roa KV, Raghavendra ASand Janardhan Reddy K (2006) Physiology and molecular biology of stress tolerance in plants. Springer, printed in Netherland. 15-39.

Margarita M, Crosby KMand Eliezer S (2002) Differential gene expression analysis in melon roots under drought stress conditions. Subtropical Plant Science. 54: 6-10.

Mohammadzade Zand Soltani F (2015) Morphological and physiological response of two accessions of Citrullus colocynthis to drought stress induced by polyethylene glycol. Iranian Journal of Plant Physiology. 5(3): 1361-1371.

Nayyar Hand Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environmental and Experimental Botany. 58: 106-113.

Petridis A, Therios I, Samouris G, Koundouras Sand Giannakoula A (2012) Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry. 60: 1-11.

Rouphael Y, Cardarelli M, Colla Gand Rea E (2008) Yield, mineral composition, water relations, and water use efficiency of grafted mini watermelon plants under deficit irrigation. Horticultural Science. 43: 730-736.

Sarker BC, Hara Mand Uemura M (2004) Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Horticultural Science. 103: 387-402.

Sensory S, Ertek A, Gedik I and Kucukyumuk C (2007) Irrigation frequency and amount affect yield and quality of field grown melon (Cucumis melo L.). Agricultural Water Management. 88: 269-274.

Shao HB,Chu LY, Jaleel CA and Zhao CX (2008) Water-deficit stress induced anatomical changes in higher plants. Comptes Rendus Biologies. 331: 215-225.

Sharma SP, Leskovar DI, Crosby KM, Volder A and Ibrahim AMH (2014) Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agricultural Water Management. 136: 75-85.

Shishido Y, Yahashi T, Seyama N and Imada S (1992) Effects of leaf position and water management on translocation and distribution of 14C assimilates in fruiting muskmelons. Journal of the Japanese Society for Horticultural Sciences. 60: 897-903.

Siddique MRB, Hamid A and Islam MS (2000) Drought stress effects on water relations of wheat. Botanical bulletin of Academia Sinica. 41: 25-39.

Wang H, Siopongco J, Wade LJ, Yamauchi A (2009) Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany. 65(2): 338-344.

Zulu NS (2009) Wild watermelon (Citrullus lanatus L.) landrace production in response to three seedling growth media and field planting dates. M.Sc. thesis. Faculty of Agriculture KwaZulu-Nata University, Pietermaritzburg.