نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه علوم باغبانی، دانشکدة کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استادیار، گروه علوم باغبانی، دانشکدة کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به‏منظور مطالعه اثر تنش کم‌آبی و سطوح مختلف مگافول بر عملکرد و کیفیت میوه و کارآیی مصرف آب گوجه‌فرنگی رقم ریوگرند آزمایشی به‏صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار، در سال 1394 در مزرعة تحقیقاتی دانشکدة کشاورزی دانشگاه زنجان انجام شد. تیمار‌های آزمایش شامل آبیاری به‏عنوان عامل اصلی در سه سطح (50، 75 و 100 درصد نیاز آبی گیاه) و محلول‌پاشی مگافول به‏عنوان عامل فرعی در چهار سطح (صفر، 1، 2 و 3 میلی‌لیتر در لیتر) بودند. نتایج آزمایش نشان دادکه تیمار آبیاری تأثیر معناداری بر عملکرد و کیفیت میوه و کارآیی مصرف آب داشت. تیمار مگافول بر سفتی بافت میوه، عملکرد، لیکوپن میوه و کارآیی مصرف آب در سطح احتمال پنج درصد معنادار شد. بیشترین مواد جامد محلول کل (41/2 درصد بریکس) و اسید قابل تیتراسیون (09/2 درصد) در تیمار تنش کم‌آبی 50 درصد نیاز آبی گیاه به‏دست آمد. در تیمار 2 میلی‌لیتر در لیتر مگافول، بیشترین مقدار مواد جامد محلول کل (29/2 درصد بریکس)، اسید قابل تیتراسیون میوه (97/1 درصد)، لیکوپن (83/0 گرم بر لیتر)، تعداد میوه (9/37)، متوسط وزن میوه (32/59 گرم)، کارآیی مصرف آب (78/21 کیلوگرم در متر مکعب) و عملکرد بوته (2680 گرم) حاصل شد. اثر متقابل معناداری بین آبیاری و مگافول در صفات اسید قابل تیتراسیون میوه، عملکرد بوته و تعداد میوه وجود داشت. بیشترین تعداد میوه (7/51) و عملکرد بوته (3278 گرم) در تیمار 2 میلی‌لیتر در لیتر مگافول در شرایط آبیاری 100 درصد نیاز آبی گیاه و حداکثر اسید قابل تیتراسیون در تیمار 1 میلی‌لیتر در لیتر مگافول و تنش کم‌آبیاری 50 درصد به دست آمد. با توجه به نتایج، کاربرد مگافول 2 میلی‌لیتر عملکرد میوه را در شرایط آبیاری نرمال و کم‌آبی بهبود بخشید و باعث افزایش 16 درصدی کارآیی مصرف آب شد. تنش کم آبیاری 75 درصد با کاهش 16 درصدی عملکرد موجب ذخیرة 25 درصدی آب در مقایسه با تیمار 100 آبیاری شد.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of foliar application of Megafol on yield, fruit quality and water use efficiency of tomato Cv. Rio Grande under water deficit stress

نویسندگان [English]

  • Zahra Esfahani 1
  • Taher Barzegar 2
  • Zahra Ghahremani 2
  • Jafar Nikbakht 3

1

2

3

چکیده [English]

In order to study the effect of water deficit stress and foliar spray of Megafol on yield, fruit quality and water use efficiency (WUE) of tomato cv. Rio Grande, an experiment was carried out in a split plot based on randomized complete block design with three replications in Research Filed at the University of Zanjan, Iran in 2015. Treatments consisted arrangement of three irrigation levels (starting irrigation at 100, 75 and 50% ETc (crop evapotranspiration)) and four levels (0, 1, 2 and 3 ml/L) of Megafol. Results showed significant effects of water deficit stress on yield, fruit quality, and WUE. Megafol treatment showed significant effects on yield, fruit firmness, lycopene content, and WUE. The highest total soluble solids (2.41%) and titratable acidity (TA) (2.09) was found at 50% ETc irrigation treatment. Foliar application of 2 ml/L megafol showed the highest value of TSS (2.29%), TA (1.97%), lycopene (0.83 g/l), fruit per plant (37.94), fruit weight (59.32 g) and WUE (21.78 kg/m3). The interaction effect of irrigation by foliar treatments had a significant effect on plant yield, fruits number per plant and TA. The maximum fruit number (51.73) and plant yield (3278.43 g) was obtained by application of 2 ml/L Megafol under 100% ETc irrigation. Also, the highest TA was achieved in 1 ml/L Megafol and 50% ETc irrigation. According to the results, foliar application of 2 ml/l Megafol improved fruit yield under normal irrigation and deficit water stress and resulted in 16% increase in WUE. Irrigation at 75% ETc level with 16% yield reduction, saved 25% of water as compared to 100% ETc treatment.  

کلیدواژه‌ها [English]

  • fruit firmness
  • fruit weight
  • lycopene
  • total soluble solids
  • vitamin c
باغانی ج. و علیزاده ا. (1379) عملکرد محصول و کارآیی مصرف آب در آبیاری قطره‌ای و شیاری. مجلة تحقیقات فنی و مهندسی کشاورزی. 18(5): 1-10.  
جلیلی مرندی ر. (1391) فیزیولوژی بعد از برداشت. انتشارات جهاد دانشگاهی ارومیه. 594 ص.
رحمانی ا. (1374) اثر تغذیه برگی بر روی صفات کمی و کیفی گوجه‌فرنگی رقم اورا بانا در منطقه کرج. پایان‌نامة کارشناسی ارشد. دانشگاه تهران. تهران.
شرایعی پ.، سبحانی ع. و رحیمیان س. (1384) تأثیر سطوح مختلف آب آبیاری و کود پتاسیم بر عملکرد، کارآیی مصرف آب و کیفیت میوة گوجه‌فرنگی رقم پتو ارلی سی اچ. مجلة تحقیقات فنی و مهندسی کشاورزی. 27(7): 75-86.
گلکار ف.، فرهمند ع. و فرداد ح. (1386) تأثیر میزان آب آبیاری بر عملکرد و بازده مصرف آب در گوجه‌فرنگی رقم اورا بانا. فصلنامة علمی پژوهشی مهندسی منابع آب. 1(1): 13-20.
وزیری ژ.، سلامت ع. انصاری م. مسچی م. حیدری ن. و دهقانی‌سانیچ ح. (1387) تبخیر-تعرق گیاهان (دستورالعمل محاسبة آب مورد نیاز گیاهان) (ترجمه). انتشارات کمیتة ملی آبیاری و زهکشی ایران، چاپ اول، تهران.
Agbemafle R., Owusu-Sekyere J., Bart-Plange A. and Otchere J. (2014) Effect of deficit irrigation and storage on physicochemical quality of tomato (lycopersicon esculentum mill. var. pechtomech). Food Science and Quality Management. 34: 113–120.
Amanda A., Ferrante A., Valagussa M. and Piaggesi A. (2008) Effect of biostimulants on quality of baby leaf lettuce grown under plastic tunnel. Acta Horticulturae. 807:407-412.
Araujo J., Gonçalves P. and Martel F.) 2011( Chemopreventive effect of dietarypoly phenols in colorectal cancer cell lines. Nutrition Research. 31(2): 77-87.
Ashraf M.A. and Harris P.J. (2005) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York. pp. 277-300.
Barba A.O., Hurtado M.C., Mata M.S., Ruiz V.F. and De Tejada M.L.S. (2006) Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry. 95(2): 328–336.
Basiouny F.M. and Maloney M. (1994) Influence of water stress on abscisic acid and ethylene production in tomato in different PAR levels. Journal of Horticultural Science. 69(3): 535-541.
FAO. (2014) FAOSTAT. Available at http://faostat3.fao.org/home/index.html (accessed on 08.14.13).
Gawronaka H. (2008) Biostimulators in modern agriculture (general aspects). Arysta Life Science. Published by the Editorial House Wies Jutra, Limited. Warsaw. 7- 25.
Gheorghe M., Gidea M., Rosca I. and Dimasis K. (2014) Research regarding the treatments with bio-stimulator at maize crop. Scientific Papers-Series A, Agronomy. 57: 192-196.
Hochmuth G.J. (1998) Response of mulched lettuce, cauliflower and tomato to Megafol bio stimulant 98-08. North Florida Research and Education Center Suwannee Valley, University of Florida. Booklet.
Jureková Z., Németh-Molnár K. and Paganová V. (2011) Physiological responses of six tomato (Lycopersicon esculentum Mill.) cultivars to water stress. Journal of Horticulture and Forestry. 3(10): 294-300.
Kuscu H., Turhan A. and Demir A.O. (2014) The response of processing tomato todeficit irrigation at various phenological stages in a sub-humid environment. Agricultural Water Management. 133: 92–103.
Marija S., Stolfa I., Lisjak M., Stanisavljevic A., Vinkovic T., Agric D., Paradikovic N., Teklic T., Engler M. and Klesic K. (2010( Strawberry (Fragaria xananassa Duck.) leaf anti-oxidative response to bio stimulators and reduced fertilization with N and K. Poljopriverda. 16(1): 50-56.
Miguel A. and Francisco M. (2007) Response of tomato plants to deficit irrigation under surface or subsurface drip irrigation. Journal of Applied Horticulture. 9(2): 97-100.
Parađiković N., Vinković T. and Radman D. (2008) The influence of bio stimulators on seed germination of flower species. Seed. 25(1): 25-33.
Parađiković N., Vinković T., Vinković Vrček I., Žuntar I., Bojić M. and Medić‐Šarić M. (2011) Effect of natural bio stimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food and Agriculture. 91(12): 2146-2152.
Patane C., Tringali S. and Sortino O. (2011) Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae 129: 590-596
Petrozza A., Santaniello A., Summerer S., Di Tommaso G., Di Tommaso D., Paparelli E. and Cellini F. (2014) Physiological responses to Megafol® treatments in tomato plants under drought stress. A phenomic and molecular approach. Scientia Horticulturae. 174: 185-192.
Sobeih W.Y., Dodd I.C., Bacon M.A., Grierson D. and Davies W.J. (2004) Long distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. Journal of Experimental Botany. 55(407): 2353-2363.
Stikic R., Popovic S., Srdic M., Savic D., Jovanovic Z., Prokic L.J. and Z. dravkovic J. (2003) Partial root drying (PRD): a new technique for growing plants that saves water and improves the quality of fruit. Plant Physiology. 29(3-4): 164-171.
. Thomas J., Mandal A.K.A., Raj Kumar R. and Chordia A. (2009) Role of biologically active amino acid formulations on quality and crop productivity of Tea (Camellia sp.). International Journal of Agricultural Research. 4: 228 –236.
Venecamp J.H. and Koot J.T.M.) 1988( Alterations of free amid and amino acid contents during the development of Maize plant, Zea mays L. Annals of Botany. 62: 589-596.
Wang F., Kang S., Du T., Li F. and Qiu R. (2011) Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management. 98(8): 1228-1238.
Xu X.D. )1986( The effect of foliar application of fulvic acid on water use, nutrient uptake and yield in wheat. Australian Journal of Agricultural Research. 37(4): 343-350.
Zhanga H., Yunwu Xionga b., Guanhua Huanga b., Xu Xua b. and Quanzhong Huanga b. (2017) Effects of water stress on processing tomatoes yield, quality andwater use efficiency with plastic mulched drip irrigation in sandy soilo f the Hetao Irrigation District Huimeng. Econpapers. 179: 205-214.
Zotarelli L, Scholberg JM, Dukes MD, Munoz-Carpena R and Icerman J (2009) Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management. 96(1): 23-34.