بررسی تأثیر تنش کم‌آبی بر صفات کمی و کیفی میوه برخی از توده های خربزه‌ ایرانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 دانشجوی کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

4 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به منظور بررسی اثر تنش کم­آبی بر صفات کمی و کیفی میوه توده خربزه ایرانی، آزمایشی­ به صورت کرت­های خرد شده در قالب طرح بلوک­های کامل تصادفی در سه تکرار، در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه زنجان، در سال 1393 انجام شد. تیمارهای آزمایش شامل سه سطح آبیاری (33، 66 و 100 درصد نیاز آبی گیاه) و ۱۱ توده خربزه شامل ‘خاتونی’، ‘کالی’، ‘اورشنگ’، ‘موری’، ‘موزی’، ‘زردتبریز’، ‘شیرازی’، ‘شیاردار’، ‘ازمیر’، ‘ایوانکی’ و ‘سوسکی سبز’ بود. نتایج نشان داد که تیمارهای آبیاری بر سفتی بافت میوه، طول و عرض میوه، ضخامت پوست میوه، pH، مواد جامد محلول، وزن متوسط میوه و عملکرد تأثیر معنی­داری داشت. تنش کم­آبی باعث افزایش مواد جامد محلول و کاهش سفتی بافت میوه گردید. کمترین عملکرد (۱۳۷۶۱ کیلوگرم در هکتار)، وزن متوسط میوه (۷/۱۳۶۳ گرم)، عرض میوه (۹۷/۱۲ سانتی‌متر)، بیشترین ضخامت پوست (۶۳/۴ میلی‌متر) و  pH (۲۸/6) در تنش شدید (33 درصد) حاصل شد. از نظر صفات مورد مطالعه در بین توده­های خربزه تفات معنی­داری وجود داشت. بیشترین طول میوه (6/31 سانتی­متر) در توده ‘خاتونی’، سفتی بافت میوه (9/2 کیلوگرم بر سانتی­مترمربع) در توده ‘زرد تبریز’، عملکرد (۴۹۶۹۸ کیلوگرم در هکتار) و وزن متوسط میوه (۳۲۲۳ گرم) در توده ‘ایوانکی’ در شرایط آبیاری 100 درصد نیاز آبی گیاه و بیشترین مواد جامد محلول (16 درصد) در توده ‘شیرازی’ در سطح آبیاری 33 درصد نیاز آبی مشاهده شد. با توجه به نتایج، توده ‘ایوانکی’ و ‘موزی’ به ترتیب با بیشترین (۲۷/۷۲ درصد) و کمترین (۴/۴۳ درصد) میزان کاهش عملکرد در آبیاری ۳۳ درصد نسبت به آبیاری معمولی به ترتیب حساس‌ترین و متحمل‌ترین توده از لحاظ این صفت به تنش کم‌آبی می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evalutaion the effect of water stress on fruit quality and quantity of some Iranian melons

نویسندگان [English]

  • Hadi Lotfi 1
  • Taher Barzegar 2
  • Vali rabiei 3
  • Zahra Ghahramani 1
  • Jafar Nikbakht 4
1 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 M.Sc. Student, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
4 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

In order to evaluate the effect of water stress on fruit quality and quantity of some Iranian melons, the experiment was set out in a split plot design with three replicates in research filed of University of Zanjan in 2014. Treatments consisted arrangement of three Irrigation levels (starting irrigation at 100, 66 and 33 ETc) and 11 genotypes of Iranian melons (ʼKhatouniʻ, ʼKaliʻ, ʼOrshangʻ, ʼMouriʻ, ʼMoziʻ, ʼZarde-Paeizeʻ, ʼShiraziʻ, ʼShiardarʻ, ʼEzmirʻ, ʼEyvan-e-keyʻ and ʼSuski-e-Sabzʻ). Results showed that irrigation had a significant effect on flesh firmness, fruit length and width, thickness of skin, pH, total soluble solids (TSS) content, fruit weight and yield ratio. The water stress significantly increased TSS and reduced flesh firmness. The lowest values of yield (13761 kg/ha), fruit weight (1363.7 gr), fruit width (12.97 cm), and the highest skin thickness (4.63 mm) and pH (6.28) was obtained in the sever water stress (start point of 33 ETc). Melon accessions showed significant differences in studied traits. The highest values of fruit length (31.6 cm),  flesh firmness (2.9 kg/cm-2), yield (49698 kg/ha) and fruit weight (3223 gr) was obtained under 100 ETc irrigation in ʼKhatouniʻ , ʼZard-e- Paeizehʻ and ʼEyvan-e-keyʻ, respectively. Also, the highest TSS was obtained in ʼShiraziʻ under 33 ETc irrigation. According to the results, ʼEyvan-e-keyʻ and ʼMoziʻ, respectively were sensitive and tolerance accession to the water stress with highest (72.27 Percent) and lowest (43.4 Percent) reduction of yield under 33 percent ETc irrigation compared normal irrigation.

کلیدواژه‌ها [English]

  • Flesh firmness
  • Fruit length
  • melon
  • Total soluble solids content
  • yield

1 . بابالار م، دولتی بانه ع و شرافتیان د (1378) بررسی تأثیر پس از برداشت کلرید کلسیم روی کیفیت انباری دو رقم انگور کشمشی بیدانه و شاهرودی. نهال و بذر. 15(1): 31-40.

2 . برزگر ط، دلشاد م، مجدآبادی ع، کاشی ع و قشقایی ژ (1390) اثر تنش کم­آبی بر رشد، عملکرد و برخی شاخص­های فیزیولوژیکی خربزه ایرانی. علوم باغبانی ایران. 42(4): 357-363.

3 . دلشاد م، برزگر ط، کاشی ع و حق­بین ک (1392) مطالعه اثر محل نگهداری میوه روی ساقه بر خصوصیات کمی و کیفی میوه در دو توده خربزه ایرانی تحت شرایط عادی و تنش کم‌آبی. علوم باغبانی ایران. 44(2): 169-178.

4 . ربیعی و، طلائی ع، پترلونگو ا، عبادی ع و احمدی ع (1382) اثر کم­آبیاری در آخر فصل بر ترکیبات میوه انگور رقم مرلوت. علوم کشاورزی ایران. 34(4): 961-986.

5 . کاشی ع (1372) اثر دور آبیاری و کاربرد ضایعات چای روی هندوانه چارلستون گری. علوم کشاورزی. 5(1): 24.

6 . نصرآبادی ح، نعمتی ح، سبحانی ع و آرویی ح (1391) اثرات دور آبیاری و خاکپوش بر برخی خصوصیات زراعی و عملکرد خربزه. به­زراعی کشاورزی. 14(1): 57-66.

7 . وزیری ژ، سلامت ع، انصاری م، مسچی م، حیدری ن و دهقانی‌سانیچ ح (1387) تبخیر-تعرق گیاهان (دستورالعمل محاسبه آب مورد نیاز گیاهان) (ترجمه). انتشارات کمیته ملی آبیاری و زهکشی ایران، چاپ اول، تهران.

 

8 . AOAC (1975) Official method of analysis of the association of official analytical chemists. 12th ed. Washington D.C. Pp. 377-378.

9 . Baligar VC, Fageria NK and He ZL (2001) Nutrient use efficiency in plants. Communication in soil Science and Plant Analysis. 32: 921-950.

10 . Cabello MJ, Castellanos MT, Romojaro F, Martinez-Madrid C and Ribas F (2009) Yield and quality of melon grown under different irrigation and nitrogen rates. Agricultural Water Management. 96: 866-874.

11 . Dogan E, Kirnak H, Berekatoglu K, Bilgel L and Surucu A (2008) Water stress imposed on muskmelon (Cucumis melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions. Irrigation Sciences. 26(2): 131-138.

12 . Fabeiro C, Martı´nF and Juan JA (2002) Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agricultural Water Management. 54: 93-105.

13 . FAO (2012) FAOSTAT [online]. Available at http://apps.fao.org/site/340/default.aspx.

14 . FAO (2013) FAOSTAT [online]. Available at http://faostat3.fao.org/home/index.html (accessed on 08.14.13).

15 . Farooq M, Wahid A, Kobayashi N, Fujita D and Basda SMA (2008) Plant drought stress: effect, mechanisms and management. Agronomy for Sustainable Development. 29: 185-212.

16 . Fereres E and Soriano MA (2007) Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany. 58: 147-159.

17 . Foyer CH, Valadier M, Migge A and Becker T (1998) Drought-induced effects on nitrate reductase activity and mRNA on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology. 177: 283-292.

18 . Hartz TK (1997) Effects of drip irrigation scheduling on muskmelon yield and quality. Sciences Horticultural. 69(1): 117-122.

19 . Leskovar DI and Piccinni G (2005) Yield and leaf quality of processing spinach under deficit Irrigation. HortScience. 40: 1868-1870.

20 . Lester GE, Oebker NF and Coons J (1994) Preharvest furrow and drip irrigation schedule effects on postharvest muskmelon quality. Postharvest Biological and Technological. 4: 57-63.

21 . Liu L, Kakihara F and Kato M (2004) Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica. 135: 305-313.

22 . Long RL, Walsh KB and Midmore DJ (2006) Irrigation scheduling to increase muskmelon fruit biomass and soluble solids concentration. Hortscience. 41(2): 367-369.

23 . Miccolis V and Saltveit Jr ME (1991) Morphological and physiological changes during fruit growth and maturation of seven melon cultivars. Journal American Society Horticultural Sciences. 116(6): 1025-1029.

24 . Mirabad A, Lotfi M and Roozban MR (2013) Impact of water-deficit stress on growth, yield and sugar content of cantaloupe (Cucumis melo L.). International Journal of Agriculture and Crop Sciences. 5 (22): 2778-2782.

25 . Mousavi SF, Mostafazadeh-Fard B, Farkhondeh A and Feizi M (2009) Effects of deficit irrigation with saline water on yield, fruit quality and water use efficiency of cantaloupe in an arid region. Journal Agricultural Sciences Technology.11: 469-479.

26 . Munger HM and Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit. Genet. Cooperative Reputation. 14: 53.

27 . Nadal M and Arola L (1995) Effects of limited irrigation on the composition of must and wine of Cabernet sauvignon under semi-arid conditions. Vitis. 34: 151-154.

28 . Natalis C, Xiloyannis S and Pezzarossa B (1985) Relationship between soil water content, leaf water potential and fruit growth during different fruit growth phases of peach trees. Acta Horticulturae. 171: 167–180.

29 . Pew WD and Gardner BR (1983) Effects of irrigation practices on vine growth, yield and quality of muskmelons. Journal of the American Society for Horticultural Sciences. 108: 134-137.

30 . Pitrat M, Hanelt P and Hammer K (2000) Some comments on intraspecific classification of cultivars of melon. In: Katzir, N., Paris, H.S. (Eds.), Proceedings of Cucurbitaceae 2000, Acta Horticulturae. 510: 29-45.

31 . Roitsch T (1999) Source-Sink regulation by sugar and stress. Plant Biology. 2(3): 198-206.

32 . Sarker BC, Hara M and Uemura M (2004) Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae. 103: 387-402.

33 . Sat Pal Sharmaa I, Daniel D, Leskovara, Kevin AM, Crosbyb AMH and Astrid Volderb I (2014) Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agricultural Water Management. 136: 75–85.

34 . Sensoy S, Ertek A, Gedik I and Kucukyumuk C (2007) Irrigation frequency and amount affect yield and quality of field grown melon (Cucumis melo L.). Agricultural Water Management. 88: 269-274.

35 . Shishido Y, Yahashi T, Seyama N and Imada S (1992) Effects of leaf position and water management on translocation and distribution of 14C assimilates in fruiting muskmelons. Journal of the Japanese Society for Horticultural Sciences. 60: 897-903.

36 . Srivastava AK and Singh S (2003) Citrus nutrition. International Book Distributing Co. Y. New Delhi. 26-24.

37 . Stella S, Costa F, Bregoli AM and Sansavini S (2005) Study on expression of gene involved in ethylene biosynthesis and fruit softening in apple and nectarine. Acta Horticulturae. 682: 141-147.

38 . Stepansky A, Kovalski I and Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematics and Evolution. 217: 313-332.

39 . Taia A, Mageed A and Semida M (2015) Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Scientia Horticulturae. 186: 89-100.

40 . USDA (2012) Irrigation and water use [online]. Available at: http://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use.aspx (accessed on 08.13.13).

41 . White DH and Omeghe B (1996) Coping with exceptional droughts in Australia. Drought network. 7(3): 13-17.