نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان.

2 دانشجوی سابق کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 دانشجوی سابق کارشناسی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

این پژوهش به منظور بررسی اثر پوترسین و اسپرمین روی برخی خصوصیات فیزیولوژیک، بیوشیمیایی و فعالیت آنزیم­های آنتی­اکسیدان بادام رقم ‘ربیع’ و هلو رقم ‘آلبرتا’ تحت تنش کم­آبی انجام شد. فاکتور اول، رژیم آبی در دو سطح (80 و 50 درصد آب فراهم خاک) و فاکتور دوم، کاربرد پلی­آمین­ها (پوترسین 1/0، پوترسین 1، اسپرمین 1/0، اسپرمین 1 میلی­مول بر لیتر و شاهد) بود. تنش کم‌آبی باعث افزایش بیشتر نشت یونی در برگ­های هلو نسبت به بادام شد. در تنش کم­آبی، کاربرد پلی­آمین­ها منجر به کاهش نشت یونی برگ هر دو گونه شد. غلظت کربوهیدرات­های محلول، پرولین و پروتئین­های محلول در برگ­های بادام تحت تنش کم‌آبی بیش از هلو افزایش یافت. کاربرد اسپرمین تأثیر بیشتری بر افزایش غلظت تنظیم‌کننده­های اسمزی نسبت به پوترسین داشت. تحت تنش کم­آبی فعالیت آنزیم­های کاتالاز، گایاکول پراکسیداز و آسکوربات پراکسیداز هر دو گونه افزایش یافت و فعالیت هر سه آنزیم تحت تنش کم‌آبی در بادام نسبت به هلو بیشتر بود. حداکثر فعالیت آنزیم­های آنتی‌اکسیدان پس از محلول­پاشی با غلظت­های مختلف اسپرمین مشاهده شد. کاربرد اسپرمین و پوترسین از طریق افزایش تنظیم‌کننده اسمزی و فعالیت آنزیم­های آنتی­اکسیدان باعث کاهش درصد نشت یونی سلول­ها و افزایش تحمل به خشکی هر دو گونه شد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Putrescine and Spermine on Drought Tolerance of Almond and Peach

نویسندگان [English]

  • Somaye Amraee Tabar 1
  • Ahmad Ershadi 2
  • Tahmine Robati 3

1 MSc. student, Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

2 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

3 B.Sc. Student, Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

چکیده [English]

This study was performed to investigate the effect of Putrescine and Spermine on some physiological and biochemical characteristics and antioxidant enzymes activity of peach (Prunus persica cv. Alberta) and almond (Prunus dulcis cv. Rabi) seedlings under water deficit. The first factor was water regime at two levels (80% or 50% of soil available water), and the second factor was polyamine treatments (putrescine 0.1, putrescine 1, spermine 0.1, spermine 1 mM and control). Water deficit led to increased electrolyte leakage percentage in peach leaves, compared to almond. Under water deficit, polyamines reduced electrolyte leakage in both plants, Spermine was more effective than Putrescine under water deficit. Leaf contents of soluble carbohydrates, proline and soluble proteins in almond more increased as compared to peach. Spermine more effectively increased concentration of osmoregulants, compared to Putrescine. Under water deficit, the activities of catalase, guaiacol peroxidase and ascorbate peroxidase enzymes increased in both plants, higher enzyme activity was found in almond leaves in comparison with peach. The maximum antioxidant enzyme activity was found following spermine treatments. Application of spermine and putrescine increased drought tolerance in almond and peach through reducing the electrolyte leakage, increasing compatibility osmolytes and antioxidant enzyme activity.

کلیدواژه‌ها [English]

  • Antioxidant enzymes؛ electrolyte leakage؛ osmotic regulators؛ polyamines
  • Water shortage
1 . باقری و، شمشیری م ح، شیرانی ح و روستا ح ر (1390) اثر قارچ میکوریز آربسکولار و تنش خشکی بر رشد، روابط آبی، تجمع پرولین و قندهای محلول در نهال های دو رقم پایه­ای پسته اهلی (.Pistacia vera L). علوم باغبانی ایران. 42(4): 365-377.
2 . جلیلی مرندی ر، حسنی ع، دولتی بانه ح، عزیزی ح و حاجی تقی­لو ر (1390) تأثیر سطوح مختلف رطوبت خاک بر خصوصیات مورفولوژی و فیزیولوژیکی سه رقم انگور (Vitis vinifera L.). علوم باغبانی ایران. 42(1): 31-40.
3 . جوادی ت، ارزانی ک و ابراهیم­زاده ح (1383) بررسی میزان کربوهیدرات­های محلول و پرولین در نه ژنوتیپ گلابی آسیایی (Pyrus serotina) تحت تنش خشکی. زیست­شناسی ایران. 17(4):12-24.
4 . خسروی­نظرآباد ح (1392) ارزیابی مقاومت به خشکی چهار رقم تجاری انار. پایان‌نامه کارشناسی ارشد. دانشگاه بوعلی سینا. همدان.
5 . ربیعی چمگردانی م (1391) ارزیابی تحمل به خشکی برخی گونه‌های بادام. پایان‌نامه کارشناسی ارشد. دانشگاه بوعلی سینا. همدان.
6 . شریعت آ و عصاره م ح (1387) اثر تنش خشکی بر رنگیزه­های گیاهی، پرولین، قندهای محلول و پارامتر­های رشد چهار گونه اکالیپتوس. پژوهش و سازندگی در منابع طبیعی. 8: 139-148.
7 . شیربانی س (1389) بررسی میزان مقاومت ارقام انجیر به کم آبیاری با هدف انتخاب ارقام مقاوم به کاشت در شرایط دیم. پایان‌نامه کارشناسی ارشد. دانشگاه فردوسی. مشهد.
8 . ضرابی م م، طلایی ع ر، سلیمانی ع و حداد ر (1389) نقش فیزیولوژیکی و تغییرات بیوشیمیایی شش رقم زیتون (Oleaeur opaea L.) در برابر تنش خشکی. علوم باغبانی (علوم و صنایع کشاورزی). 24(22): 244-234.
9 . طلایی ع ر، قادری ن، عبادی ع و لسانی ح (1390) پاسخ‌های بیوشیمیایی دو رقم انگور ساهانی و بیدانه سفید به تغییرات پتانسیل آب خاک. علوم باغبانی ایران. 42(3): 308-301.
10 . نصیبی ف، منوچهری­کلانتری خ و فاضلیان ن (1391) اثر پیش‌تیمار اسپرمیدین و متیلن بلو بر برخی پاسخ­های فیزیولوژیکی گیاه بابونه (Matricaria recutita L.) به تنش شوری. فرایند و کاردکرد گیاهی. 1(2): 61-71.
 
11 . Abd El-Wahed MSA (2006) Exogenous and endogenous polyamines relation to growth, α-cellulose precipitation in fibers and productivity of cotton plant. World Journal of Agricultural Sciences. 2(2): 139-148.
12 . Abdel Aziz Nahed G, Taha Lobna S and Ibrahim Soad MM (2009) Some studies on the effect of putrescine, ascorbic acid and thiamine on growth, flowering and some chemical constituents of gladiolus plants at Nubaria. Ozean Journal of Applied Sciences. 2(2): 169-178.
13 . Anjum MA (2010) Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiologiae Plantarum. 32: 951-959.
14 . Anjum SA, Xie XY, Wang LC, Saleem MF, Man C and Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6: 2026-2032.
15 . Bacelar EM, Moutinho-pereira JM, Gone BC, Alves lopes JI and Correia CM (2009) physiological  responses of different olive genotypes to drought conditions. Acta physiologiae plantarum. 31: 611-621.
16 . Bartels D and Sunkar R (2005) Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 24: 23-58.
17 . Bates LS, Waldren RP and Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-7.
18 . Bergmeryer N (1970) Method der enzymatic analyse. Akademie Verlag, Berlin. PP. 636- 647.
19 . Bohner HJ and Jensen RG (1996) Strategies for engineering water- stress tolerance in plant. Trends in Biotiechnology. 14: 89-97.
20 . Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytica Biochemistry. 72: 248-254.
21 . Clarke TG and Ferre PA (2002) The soil Solution Phase. (PP. 419-422). In: Campbell GS, Horton R, Jury WA, Nielson DR, Van Es HM and Wierenge PJ (Eds). Methods of soil analysis part 4 Physical Methods. Soil Science Society of American, Inc. Madison, Wisconsin, USA.
22 . Dasgupta J and Bewley D (1984) Variation in protein synthesis in different regions of greening leaves of barley seedlings and effects of imposed water stress. Journal of Experimental Botany. 35: 1450-1459.
23 . Elsheery NI and Cao (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum. 30: 769-777.
24 . Farooq M, Wahid A and Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum. 31: 937-945.
25 . Genadii B, Irina V, Anna I and Victor K (2002) Accumulation of dehydrin-like protein in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. Plant Biology. 2: 157-170.
26 . Gholami M, Rahemi M and Rastegar S (2012) Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia horticulturae. 148: 109-117.
27 . Groppa MD and Benavides MP (2008) Polyamines and abiotic stress: recent advances Review Article. Amino Acids. 34: 35-45.
28 . Ha HC, Sirisoma NS, Kuppusamy  P,  Zweier  JL, Woster PM and Casero RA (1998) The natural polyamines spermdine functions directly as a free radical scavenger. Biochemistry. 95: 11140-11145.
29 . Heikkila JJJ, Papp ET, Schultz JA and Bewley JD (1984) Introduction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid and wounding. Plant Physiology. 76: 270-274.
30 . Herzog V and Fahimi HD (1973) A new sensitive colorimetric assay for peroxidase using 3, 3′-diaminobenzidine as hydrogen donor. Analytical Biochemistry. 55: 554-562.
31 . Hessine K, Martinez J P, Gandour M, Albouchi A, Soltani A and Abdelly C (2005) Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Experimental Botany 67: 312-319.
32 . Kubis J (2003) Polyamines and”scavenging system’’: influence of exogenous spermidine on catalase and guaicol peroxidase activities, and free polyamines level in barley leaves under water deficit. Acta Physiologiae Plantarum. 25: 337-343.
33 . Kuznetsov W, and Shevyankova NL (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum. 100: 320-326.
34 . Lutts S J, Kinet M and Bouharmont J (1995) Changes in plant response to NaCl during development of rice varieties differing in salinity resistance. Experimental Botany. 46: 1843-1852.
35 . Martinez J P, Kinet J M, Bajji M and Lutts S (2005) NaCl alleviates polyethylene glycolinduced water stressing the halophyte species Atriplex halimus L. Experimental Botany. 56: 2421-2431.
36 . Nakano Y and Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867-880.
37 . Nayyar H and Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. Agronomy and Crop Science. 190: 65-355.

38 . Nayyar H, Kaur S, Sanjeev K, Sing KJ and Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max L. Merrill.) to water deficit stress. Botanical Bulletin of Academia Sinica.  46: 333-338.

39 . Paquin R and Lechasseur P (1979) Observations surune methode de dosage de la prolin elibredans les extraits de plantes. Canadian Journal of Botany. 57: 1851-1854.
40 . Singh Gill S and Tuteja N (2010) Polyamines and abiotic stress tolerance in plant. Plant Signaling and Behavior. 5(1): 26-33.
41 .  Manfreda S and Xiloyannis C (2008) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth System Sciences. 12: 291-301.
42 . Syed Sarfraz H, Muhammad A, Maqbool A and Kadambot HM (2011) Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants”. Biotechnology Advances. 29: 300-311.
43 . Toumi I, Moschou PN, Paschalidis K A, Bouamama B, Salem-fnayou  AB, Ghorbel AW, Mliki A and Roubelakis –Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. Journal of Plant Physiology. 167: 519-525.
44 . Zhang W, Jiang B Li W, Song H, Yu Y and Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae. 122: 200-208.
45 . Zhao H and Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae. 116: 442-447.
46 . Zrig A, Tounekti T, Vadel A M, Mohamed H B, Valero D, Serrano M, Chtara C and Khemira H (2011) Possible involvement of polyphenols and polyamines in salt tolerance  of almond rootstocks. Plant Physiology and Biochemistry. 49: 1313-1322.