نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، تهران - ایران

2 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج - ایران

چکیده

تحقیق حاضر با هدف ارزیابی نقش قارچ میکوریزایی بر فعالیت آنتی­اکسیدانی گندم تحت تنش شوری، در گلخانه دانشکده کشاورزی و منابع طبیعی دانشگاه تهران، در سال 1390 انجام شد. آزمایش به صورت فاکتوریل و در قالب طرح بلوک کامل تصادفی در سه تکرار اجرا گردید. تیمارهای آزمایشی عبارت از سه سطح تنش شوری شامل شاهد (بدون تنش)، 60 و 120 میلی­مولار نمک کلرید سدیم و دو سطح تلقیح میکوریزایی (تلقیح و عدم تلقیح قارچ میکوریزاییGlomusmosseae) بود. صفات مورد ارزیابی شامل طول ریشه و اندام هوایی، وزن خشک ریشه و اندام هوایی، درصد کلونیزاسیون ریشه و فعالیت آنزیم­های آنتی­اکسیدان سوپراکسیددیسمیوتاز، کاتالاز و گایاکول پراکسیداز بود. نتایج حاصل نشان­دهنده اثرات بازدارنده تنش شوری بر رشد گیاه گندم بود، به نحوی که با افزایش شدت تنش شوری طول و وزن خشک اندام هوایی و ریشه به میزان قابل ملاحظه­ای کاهش یافت. به­کارگیری تیمار میکوریزایی موجب بهبود رشد اندام هوایی و ریشه بوته­های گندم در شرایط تنش گردید. همچنین، تنش شوری موجب کاهش درصد کلونیزاسیون ریشه و افزایش فعالیت آنزیم­های آنتی­اکسیدان مورد ارزیابی گردید. اعمال تیمار میکوریزایی نقش مؤثری در ارتقاء رشد و فعالیت آنزیم‌های آنتی‌اکسیدان گندم به ویژه در شرایط تنش شوری داشت. هرچند اثر متقابل شوری و میکوریزا برای آنزیم­های کاتالاز و سوپراکسیددیسمیوتاز در ریشه و برای آنزیم گایاکول پراکسیداز در اندام هوایی و ریشه معنی­دار نبود.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of Arbuscular Mycorrhizal Fungus (AMF) on antioxidant enzyme activities in salt-stressed wheat

نویسندگان [English]

  • Omid Younesi 1
  • Ali Moradi 2

1 Ph.D. in Crop Physiology, Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Tehran - Iran

2 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasuj University, Yasuj - Iran

چکیده [English]

This study investigated the influence of inoculation with an arbuscular mycorrhizal fungus (AMF), Glomus mosseae (Nicol & Gerd.) on growth and antioxidant enzyme activities (SOD, CAT, GUPX) in shoots and roots of wheat (Triticum aestivum L.) affected by three different levels of salt stress. The experiment was arranged as a factorial in Randomized Complete Block Design (RCBD) with three replications. Experimental treatments including: three levels of salinity stress (0 (control), 60 and 120 µm) and two levels of inoculation (inoculation and non inoculation). Salinity decreased wheat growth, regardless of the mycorrhizal treatment and the salt stress level. The plants inoculated with AMF had significantly greater shoot biomass than the control plants at all salinity levels. However, the results pointed out that salinity had inhibitory effects on mycorrhizal infection. The highest mycorrhizal infection was observed in the control plants. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total SOD, GUPX and CAT, of wheat compared to their respective non-stressed controls. The AMF induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with AMF could serve as a useful tool for alleviating salinity stress in salt-sensitive plants. However, Analysis of variance indicated that there was not significant interaction between salt and mycorrhizal inoculation on SOD and CAT of roots. Also, there was not significant interaction between salt and mycorrhizal inoculation on GUPX in both shoots and roots.

کلیدواژه‌ها [English]

  • Arbuscular Mycorrhizal Fungi
  • Cat
  • DUPX
  • salinity
  • SOD
  • Wheat
1 . Al-Karaki G (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10: 51-54.
2 . Al-Karaki G and Hammad NR (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. Plant Nutrition. 24(8): 1311-1323
3 . Bierman B and Linderman R (1981) Quantifying vesicular arbuscular mycorrhizae: Proposed method towards standardization. New Phytologist. 87: 63-67.
4 . Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities in utilizing the principle of protein dye binding. Analytical Biochemistry. 72: 254-284.
5 . Cakmak I and Horst W (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max). Plant Physiology. 83: 463-468.
6 . Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D and Van Breusegem F (2000) Dual action of the active oxygen species during plant Stress Responses. Cellular and Molecular Life Sciences. 57: 779-795.
7 . Ghanati F, Morita A and Yokota H (2002) Induction of suberin and increase of lignin content by excess Boron in Tabacco cell. Plant Nutrition. 48: 357-364.
8 . Giannopolitis C and Ries S (1977) Superoxide dismutase. I. Occurence in higher plant. Plant Physiology. 59: 309-314.
9 . Glick BR (1995) The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41: 109-117.
10 . Gossett DR, Millhollon EP and Lucas MC (1994) Anti oxidant response to NaCl stress in Salt-tolerant and Salt-sensitive cultivars of cotton. Crop Science. 34: 706-714.
11 . Gupta N and Rutaray S (2005) Growth and development of AM fungi and maize under salt and acid stress. Acta Agricultural Scandinavia, Section B, Soil and Plant Science. 55: 151-157.
12 . Halliwell B and Gutteridge JM (1989) Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity, free radicals in biology and medicine, Halliwell, B. and Gutteridge, J. M. C, Eds., Oxford: Clarendon. Pp. 86-123.
13 . Harinasut P, Poonsopa D, Roengmongkol K and Charonsataprom R (2003) Salinity effects on antioxidant enzymes in Mulberry cultivar. Science Asia. 29: 109-113.
14 . Jahromi F, Aroca R, Porcel R and Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo Physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology. 55: 45-53.
15 . Jimenez A, Hernandez JA, Del Rio LA and Sevilla F (1997) Evidence for the presence of the ascorbateglutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology. 114: 275-284.
16 . Jindal V, Atwal A, Sekhon BS and Singh R (1993) Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiology and Biochemistry. 31: 475-481. 
17 . Juniper S and Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza. 4: 45-5.
18 . Mathur N and Vyas A (1996) Biochemical changes in Ziziphus xylopyrus by VA mycorrhizae. Botanical Bulletin of Academia. 37: 209-212.
19 . McMillen BG, Juniper S and Abbott LK (1998) Inhibition of hyphal growth of a Vesicular arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology and Biochemistry. 30: 1639-1646.
20 . Netondo GF, Onyango JC and Beck E (2004) Crop physiology and metabolism. Sorghoum and salinity: I. Response of growth, water relation and ion accumulation to Nacl salinity. Crop Society of America. 44: 797-805.
21 . Neumann P (1977) Salinity resistance and plant growth revised. Plant Cell and Environment. 20: 1193-1198.
22 . Nunez M, Mazzafera P, Mazorra LM, Siquira WJ and Zullo MA (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Plant Biology. 47: 67-70.
23 . Ojala J, Jarrell C, Menge MW and Johnson JA (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy. 75: 225-259.
24 . Phillips J and Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55: 158-161.
25 . Porcel R, Barea JM and Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 157: 135-143.
26 . Prasad MNV (1997) Plant ecophysiology. John Wily and Sons. Inc.
27 . Rabie GH and Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Biotecnology. 4(3): 210-222.
28 . Ruiz-Lozano JM, Collados C, Barea JM and Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist. 151: 493-502.
29 . Saleh M and Al-Garni S (2006) Increased heavy metal tolerance of cowpea plant by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Biotecnology. 5(2): 133-142.
30 . Simpson D and Daft MJ (1990) Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil. 121: 179-186.
31 . Xiong L, Schumaker KS and Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell. 165-183.
32 . Younesi O, Moradi A and Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta agriculturae Slovenica, 101-2, September 2013 str. 219-230.