اثر محلول‌پاشی متانول بر برخی ویژگی‌های کمی و کیفی سویا تحت تنش خشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد گروه باغبانی، دانشکدة کشاورزی، دانشگاه زابل، زابل - ایران

2 استاد گروه زراعت، دانشکدة کشاورزی، دانشگاه زابل، زابل – ایران

3 دانشیار گروه زراعت، دانشکدة کشاورزی، دانشگاه زابل، زابل - ایران

چکیده

به­منظور بررسی تأثیر تنش خشکی و محلول­پاشی متانول بر ویژگی­های کمی و کیفی سویا (رقم ’ویلیامز‘)، آزمایشی به­صورت کرت‌های خردشده در قالب بلوک­های کامل تصادفی با سه تکرار، در مزرعة پژوهشی دانشکدة کشاورزی مغان در سال 1390 انجام گرفت. تنش خشکی شامل آبیاری پس از 40، 55 و 70 درصد تخلیة رطوبت قابل دسترس به‌عنوان عامل اصلی، و محلول­پاشی متانول شامل عدم محلول­پاشی (شاهد) و محلول­پاشی با 7، 21 و 35 درصد حجمی متانول به‌عنوان عامل فرعی لحاظ شد. تأثیر تنش خشکی بر قطر ساقه، طول غلاف، تعداد غلاف در بوته، تعداد دانه در غلاف، عملکرد دانه، شاخص برداشت، محتوای هیدرات­ کربن محلول، کلروفیل کل، درصد روغن و پروتئین دانه معنادار بود. افزایش تنش خشکی موجب افزایش محتوای هیدرات­ کربن محلول، درصد روغن دانه و کاهش سایر ویژگی­های مورد بررسی شد. تیمار آبیاری پس از 70 درصد تخلیۀ رطوبت قابل دسترس عملکرد دانه را 87/33 درصد کاهش داد. تأثیر محلول‌پاشی متانول بر تعداد غلاف در بوته، عملکرد دانه و محتوای کلروفیل بسیار معنادار و بر طول غلاف، تعداد دانه در غلاف، هیدرات­ کربن محلول و درصد پروتئین دانه معنادار بود. بیشترین تأثیر بر ویژگی‌های بررسی‌شده از تیمار محلول‌پاشی با 21 درصد حجمی متانول به‌د‌ست آمد، به‌طوری که عملکرد دانه نسبت به شاهد 6/25 درصد افزایش یافت و بیشترین عملکرد دانه از تیمار آبیاری پس از 40 درصد تخلیۀ رطوبت قابل دسترس به­دست آمد.
 
                                                       
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of methanol spraying on some quantitative and qualitative traits of soybean under drought stress condition

نویسندگان [English]

  • Jaber Esazadeh Panjali Kharabasi 1
  • Mohammad Galavi 2
  • Mahmoud Ramroudi 3
1 Graduated M.Sc. Student, Department of Horticulture, Faculty of Agriculture, University of Zabol, Zabol - Iran
2 . Professor, Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol – Iran
3 Associate Professor, Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol - Iran
چکیده [English]

In order to evaluate the effects of drought stress and methanol foliar application on some quantitative and qualitative traits of soybean (cv. Viliamz), a split plot experiment was conducted based on randomized complete block design at the Faculty of Moghan Research Farm in 2011. Treatments were three levels of drought stress based on irrigation at depletion of 40, 55 and 70 percent of available soil moisture comprising the main-plot and four rates of methanol foliar application including non-methanol spraying (control), 7, 21 and 35 volumetric percentages as sub-plots that were applied with three replications. Drought stress significantly affected stem diameter, pod length, number of seed per pod, number of pod per plant, seed yield, HI, soluble carbohydrates, chlorophyll content, oil and protein percentage of seed. Drought stress increased soluble carbohydrates and oil percentage of seed and decreased other traits, so that irrigation at depletion of 70 percent of available soil moisture decreased seed yield by 33.87 percent. Methanol foliar application significantly affected number of pod per plant, seed yield, chlorophyll content, pod length, number of seed per pods, soluble carbohydrates and seed protein content. The greatest effect of methanol foliar application on studied traits obtained from 21 percent by volume of methanol and increased seed yield by 25.6 percent in comparison with the control and the highest seed yield for irrigation after 40 percent depletion of available moisture was obtained.
 
 
 

کلیدواژه‌ها [English]

  • chlorophyll content
  • Moisture depletion
  • Number of pod
  • seed protein
  • Seed yield
 

1 . امینی‌فر، ج، بیگلویی م ح، محسن‌آبادی غ م و سمیع‌زاده ح (1391) اثرات کم آبیاری بر عملکرد کمی و کیفی رقم­های سویا در منطقة رشت. تولید گیاهان زراعی. 5(2): 109-93.

2 . پورموسوی س ر، گلویم، دانشیان ج، قنبری ا و بصیرانی ن (1388) تأثیر کود دامی بر عملکرد کمی و کیفی لاین سویا در شرایط تنش خشکی. علوم گیاهان زراعی. 40(1): 145-133.

3 . دانشیان ج (1379) بررسی اکوفیزیولوژیک اثرات تنش کم­آبی در سویا. رسالۀ دکتری زراعت، دانشگاه آزاد واحد علوم تحقیقات.

4 . زارع زرگر ج (1389) اثر کم­آبیاری بر ویژگی­های کمی و کیفی سه رقم ماش. پایان­نامة کارشناسی ارشد زراعت، دانشکدۀ کشاورزی دانشگاه زابل.

5 . شاه­مرادی ش (1382) بررسی اثرات تنش خشکی بر روی صفات کمی و کیفی ارقام و لاین­های پیشرفتۀ سویا. پایان­نامۀ کارشناسی ارشد زراعت، دانشکدۀ کشاورزی دانشگاه تهران.

6 . صفرزاده ویشگائی م ن، نورمحمدی ق و مجیدی هروان ا (1386) اثر متانول بر رشد و عملکرد بادام زمینی. علوم کشاورزی. 13(1): 104-87.

7 . فرنیا ا، نورمحمدی ق، نادری ا، درویش ف و مجیدی هروان ا (1385) تأثیر تنش خشکی و نژادهای باکتری Bradyrhizobium -japonicum بر عملکرد دانه و صفات وابسته به آن در سویا (رقم کلارک) در بروجرد. علوم گیاهان زراعی ایران. 8(3): 214-201.

8 . کافی م، زند ا، کامکار ب، شریفی ح ر و گلدانی م (1379) فیزیولوژی گیاهی (جلد دوم). انتشارات جهاد دانشگاهی مشهد. 379 ص.

9 . محلوجی م، موسوی س ف و کریمی م (1379) اثر تنش رطوبتی و تاریخ کاشت بر عملکرد و اجزای عملکرد لوبیاچیتی. علوم و فنون کشاورزی و منابع طبیعی. 4(1): 68-57.

10 . مرادی ع، احمدی ع و حسین­زاده ع ه (1387) واکنش زراعی - فیزیولوژیک ماش (رقم پرتو) به تنش­های شدید و خفیف خشکی در مراحل رشد رویشی و زایشی. علوم فنون کشاورزی و منابع طبیعی. 12(3): 672-659.

11 . میرآخوری م، پاک­نژاد ف، اردکانی م ر، پازوکی ع ر، ناظری پ و اسماعیل­پور­جهرمی (1388) ارزیابی اثر تنش خشکی و محلول­پاشی متانول بر مقدار پروتئین و روغن دانه، سرعت و دورة پر شدن دانۀ سویا (L17). تنش­های محیطی در علوم کشاورزی. 2(2): 183-171.

 

12 . Aslani A, Safarzadeh Vishgahi MN, Farzi M, Noorhosseini Niyaki SA and Jafari Paskiabi M (2011) Effect of foliar application of methanol on growth and yield of moonbeam (Vigna radiate L.) in Rasht, Iran. Afican Journal of Agricultural Research. 6(15): 3603-3608.

13 . Attari AA (2006) Oil production and consumption of oil seeds in the world. Publication of Industry of Vegetable Oil Production, Magazine No. 13.

14 . Ball RA, Purcell LC and Vories ED (2000) Short-season soybean yield compensation in response to population and water regime. Crop Science. 40: 1070-1078.

15 . Basu PS, Berger JD, Turner NC, Chaturvedi SK, Ali M and Siddique KHM (2007) Osmotic adjustment of chickpea (Cicerarietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought. Annals of Applied Biology. 150: 217-225.

16 . Clover G, Smith H and Jaggard K (1998) The crop under stress. British Sugar Beet Review. 66(3): 17-19.

17 . Cober ER and Voiding HD (2000) Developing high–protein, high–yield soybean populations and lines. Crop Science. 40: 39-42.

18 . Fall R and Benson A (1996) Leaf methanol, the simplest natural product from plants. Trends Plant Science. 1: 296-301.

19 . Hsiao TC (2000) Leaf and root growth in relation to water status. Horticultural Science. 35: 1051-1058.

20 . Irigoyen JJ, Emerrich DW and Sanchez-Diaz M (1992) Water stress induced changes in concentration of praline and total soluble sugars in modulated alfalfa plant. Plant Physiology. 84: 55-60.

21 . Kane MV, Steel CC and Hildebrand DF (1997) Early–maturing soybean cropping system: III: Protein and oil contents and oil composition. Agronomy. 89: 464-469.

22 . Kooks RA and Klark R (1996) Drought resistance in soybean cultivar. I. Grain yield responses. Australian Journal of Agricultural Research. 29: 897-912.

23 . Laurence RCN, Gibbons RW and Young CT (1976) Changes in yield, protein, oil and maturity of groundnut cultivars with the application of sulfur fertilizers and fungicides. The Journal of Agricultural Science. 86(2): 245-250.

24 . Li Y, Gupta J and Siyumbano AK (1995) Effect of methanol on soybean photosynthesis and chlorophyll. Plant Nutrients. 18: 1875-1880.

25 . Liu F, Andersen MN and Jensen CR (2004) Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crop Research. 85: 159-166.

26 . Muchow RC (1985) Phonology, seed yield and water use of legume grown under different soil regimes in semi-arid tropical environment. Field Crop Research. 11: 81-97.

27 . Nonomura AM and Benson A (1992) The path of carbon in photosynthesis: improved crop yields with methanol. Proceedings of the National Academy of Sciences of the United States of America. 89: 9794-9798.

28 . Palmer J, Dunphy J and Reese P (1995) Managing drought - stressed soybeans in the southeast. North Carolina cooperative extension service as publication number AG-519-12. http://www.ces.ncsu.Edu/drought/dro-24.Html.

29 . Pandy RK, Herrera WAT, Villegas AN and Pendleten TW (1984) Drought response of grain legumes under irrigation gradient: III. Plant growth. Agronomy. 76: 557-560.  

30 . Ramberget HA, Bradley JSC, Olson JSC, Nishio JN, Markwell J and Osterman JC (2002) The role of methanol in promoting plant growth: An update. Plant Biochemistry and Biotechnology. 1: 113-126.

31 . Ramirez I, Dorta F, Espinoza V, Jimenez E, Mercado A and Pen Cortes A (2006) Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco and tomato plants. Plant Growth Regulation. 25: 30-44.

32 . Stewart GR (1992) Physiology and Biochemistry of Drought Resistance in Plant, Aspinnal New York.

33 . Sunderman HD and Sweeney DW (1997) Soybean response to foliar applied methanol in humid and semiarid environments. Products Agriculture. 10(3): 415-418.

34 . Zbiec II, Karczmarczyk S and Koszanski Z (1999) Influence of methanol on some cultivated plants. Department of Plant Production and Irrigation. Agricultural University of Szczecin Poland. 73: 217-220.

35 . Zbiec II, Karczmarczyk S and Podsiado C (2003) Response of some cultivated plants to methanol as compared to supplemental irrigation. Electronic Journal of Polish Agricultural Universities. 6: 1-7.