نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت و عضو هیأت علمی، بخش نهال و بذر، مؤسسۀ تحقیقات علوم باغبانی، پژوهشکدۀ مرکبات و میوه‌های نیمه‌گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران

2 استاد، گروه علوم باغبانی، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانشیار، بخش نهال و بذر، مؤسسۀ تحقیقات علوم باغبانی، پژوهشکدۀ مرکبات و میوه‌های نیمه‌گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران

4 دانشیار، گروه علوم باغبانی، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

به‌منظور بررسی اثر خشکی بر مقدار برخی ترکیبات در دانهال‌های نوسلار شش‌ماهۀ پونسیروس (Poncirus trifoliata Raf.)، ترویرسیترنج(Citrus sinensis Osbec. × Poncirus trifoliata Raf.) ، نارنج(Citrus aurantium L.) ، سیتروملو(Citrus paradisi M. × Citrus sinensis Osbec.)  و نارنگی کلئوپاترا (Citrus reshni L.)، آزمایشی در مؤسسۀ تحقیقات مرکبات رامسر، در سال 1393 انجام گرفت. این پژوهش، به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در بستر کوکوپیت و ماسه تحت شرایط گلخانه‌ای انجام گرفت. فاکتورها شامل پایه‌های تجاری مرکبات و سطوح آبیاری بودند. نتایج نشان داد پرولین، کل قندهای محلول، مالون‌دی‌آلدئید و کاروتنوئید در شرایط تنش خشکی افزایش یافتند، درحالی که مقدار کلروفیل a، b و کل کاهش یافت. در اثر خشکی، بیشترین تجمع پرولین در پایه‌های نارنج و نارنگی کلئوپاترا (به‌ترتیب با 41/306 و 65/281 میکرومول بر گرم وزن خشک) و همچنین بیشترین تجمع قندهای محلول در پایه‌های نارنج و نارنگی کلئوپاترا (به‌ترتیب با 79/233 و 9/137 میلی‌گرم بر گرم وزن خشک) و کمترین مقدار تجمع مالون‌دی‌آلدئید نیز در پایه‌های نارنج و نارنگی کلئوپاترا (به‌ترتیب با 21/179 و 1/204 میکرومول بر گرم وزن خشک) مشاهده شد. میزان کاهش کلروفیل a و کلروفیل کل در نارنگی کلئوپاترا و کلروفیل b در نارنج بیشترین و میزان کاهش کلروفیل a، b و کل در سیتروملو کمترین بود. همچنین بیشترین افزایش کاروتنوئید در نارنج و نارنگی کلئوپاترا و کمترین آن در پونسیروس مشاهده شد. ازاین‌رو، پایه‌های سه‌برگچه‌ای بترتیب پونسیروس، ترویرسیترنج و سیتروملو تحمل بیشتری به خشکی نشان دادند.
 
 
 

کلیدواژه‌ها

عنوان مقاله [English]

Effect of drought stress on proline, soluble sugars, malondialdehyde and pigments content in northern commercial Citrus rootstocks

نویسندگان [English]

  • Reza Fifaei 1
  • Reza Fotouhi Ghazvini 2
  • Behrooz Golein 3
  • Yusef Hamidoghli 4

1 Ph.D. Student, Department of Horticulture, Faculty of Agriculture Science, University of Guilan, Rasht and Scientific Member, Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran

2 Professor, Department of Horticulture, Faculty of Agriculture Science, University of Guilan, Rasht, Iran

3 Associate Professor, Department seed and plant, Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran

4 Associate Professor, Department of Horticulture, Faculty of Agriculture Science, University of Guilan, Rasht, Iran

چکیده [English]

Citrus often were encountered with periodic droughts. For this reason, drought effect on six-month-old seedlings of Poncirus (PT) (Poncirus trifoliata Raf.),Troyer citrange (TC) (Citrus sinensis Osbec. × Poncirus trifoliata Raf.),Citrumello (CR) (Citrus paradisi M. × Citrus sinensis Osbec.),Sour orange (SO) (Citrus aurantium L.),andCleopatra mandarin (CM) (Citrus reshni L.) were tested on 2014 in Ramsar Citrus Research Institute. This research was conducted as factorial experiment based on completely randomized design with three replications. The factors included commercial Citrus rootstocks and two level of irrigation. The results showed that maximum quantities of proline, total soluble sugars, malondialdehyde and carotenoid and minimum quantities of total, b and a chlorophyll were observed in drought stress. Maximum accumulation of proline (ordered 306.41 and 281.65 µmol/gdw) and total soluble sugars (ordered 233.79 and 137.9 mg/gdw) and minimum accumulation of malondialdehyde (ordered 179.21 and 204.1 µmol/gdw) were observed in SO and CM rootstocks under drought stress. Decreasing amount of total and chlorophyll a in CM and chl b in SO rootstock was more than other rootstocks and decreasing amount of total and b, a chlorophyll in CR was least. Furthermore, increasing amount of carotenoid in SO and CM was most and the least amounts in PT was observed. On the basis of the study, trifoliate rootstocks as Poncirus, Troyer citrange and Citrumello tolerate as much as drought.
 
 

کلیدواژه‌ها [English]

  • Antioxidant
  • Biochemical
  • Carotenoid
  • Chlorophyll
  • Osmotic adjustment
 
1 . آمارنامه کشاورزی (1391) دفتر آمار و فناوری اطلاعات معاونت امور برنامه‌ریزی و اقتصادی وزارت جهاد کشاورزی، انتشارات وزارت جهاد کشاورزی. تهران. صص. 76-48.
2 . ارجی ع، ارزانی ک و ابراهیم‌زاده ح (1382) مطالعۀ کمی پرولین و کربوهیدرات‌های محلول در پنج رقم زیتون تحت تنش خشکی. زیست‌شناسی ایران. 16(4): 59-47.
3 . برزگر ک (1390) بررسی خصوصیات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی برخی ژنوتیپ‌ها و ارقام امیدبخش بادام در ارتباط با خشکی. دانشگاه تربیت مدرس. تهران. پایان‌نامة کارشناسی ارشد. صص. 75-50.
4 . جوادی ت (1382) اثر تنش خشکی بر خصوصیات فیزیولوژیکی و بیوشیمیایی نه ژنوتیپ گلابی آسیایی (Pyrus serotna Rehd.). دانشگاه تربیت مدرس. تهران. رسالة دکتری. صص. 123-114.
5 . ربیعی و (1383) بررسی واکنش های فیزیولوژیکی و مورفولوژیکی برخی ارقام انگور به تنش خشکی. دانشگاه تهران. تهران. رسالة دکتری. صص. 144-105.
6 . روزبان م (1388) بررسی مکانیسم‌های فیزیولوژیکی تحمل به خشکی در سه پایۀ دانهالی پسته. دانشگاه تربیت مدرس. تهران. رسالة دکتری. صص. 77-72.
7 . ضرابی م، طلایی م، سلیمانی ع و حداد ر (1389) نقش فیزیولوژیکی و تغییرات بیوشیمیایی شش رقم زیتون در برابر تنش خشکی. علوم باغبانی (علوم و صنایع کشاورزی). 24(2): 244-233.
8 . فتوحی قزوینی ر، حیدری م و هاشم‌پور ا (1390) فیزیولوژی و بیولوژی مولکولی تحمل تنش در گیاهان. انتشارات جهاد دانشگاهی مشهد، مشهد. صص. 57-39.
9 . قادری ن، طلایی ع، عبادی ع و لسانی ح (1389) تأثیر تنش خشکی و آبیاری مجدد بر برخی خصوصیات فیزیولوژیکی سه رقم انگور ساهانی، فرخی و بیدانه سفید. علوم باغبانی ایران. 41(2): 188-179.
10 . نصراصفهانی ا و گلجین ن (1387) برآورد کارایی مصرف آب محصولات زراعی در دشت برخوار اصفهان و دشت گرگان و گنبد. وزارت جهاد کشاورزی. معاونت برنامه‌ریزی و اقتصادی. مؤسسۀ پژوهش‌های برنامه‌ریزی و اقتصاد کشاورزی. صص. 35-18.
11 . یزدانی ن، ارزانی ک و ارجی ع (1386) تعدیل تنش خشکی با کاربرد پاکلوبوترازول در دو رقم زیتون (بلیدی و میشن). علوم کشاورزی ایران. 38(3): 60-54.
 
12 . Alizadeh A, Alizadeh V, Nassery L and Eivazi A (2011) Effect of drought stress on apple dwarf rootstocks. Technical Journal of Engineering and Applied Science. 3: 86-94.
13 . Arnon DI (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology. 24: 1-15.
14 . Bajaj S, Jayaprakash T, Li-Frei L, Ho THD and Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Molecular Breeding. 5: 493-503.
15 . Balaguer L, Pugnaire FL, Martinez-Ferri E, Armas C, Valladares F and Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil. 240: 343-352.
16 . Bates LS, Waldron RP and Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-208.
17 . Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation. 20: 33-45.
18 . Delauney AJ and Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. The Plant Journal. 4: 215-223.
19 . Elkahoui S, Hernandez JA, Abdelly Ch, Ghrir R and Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science. 168: 607-613.
20 . Fereres E and Soriano MA (2007) Deficit irrigation for reducing agricultural water use. Experimental Botany. 58: 147-159.
21 . Garcıa-Sancheza F, Syvertsena JP, Gimenoc V, Botlab P and Perez-Perezb JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiologia Plantarum. 130: 532-42.
22 . Hare PD, Cress WA and Standen J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment. 21: 535-553.
23 . Heath RL and Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives. Biochemistry and Biophysics. 125: 189-198.
24 . Iannucci A, Russo M, Arena L, Di Fonzo N and Martiniello P (2002) Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers. European Journal of Agronomy. 16: 111-122.
25 . Jimenez S, Dridi J, Gutierrez D, Moret D, Jrigoyen JJ, Moreno MA and Gogorcena Y (2013) Physiological, biochemical and molecular responses in four prunus rootstocks submitted to drought stress. Tree Physiology. 33: 1061-75.
26 . Khan MA, Idrees M and Shahab D (2007) Chlorophyll content in some Citrus species. Vejetos. 20(2): 7-8.
27 . Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Leite Junior RP, Pereira LFP and Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. X Poncirus trifoliata Raf.) overproducing proline. Plant Science. 167: 1375-1381.
28 . Nair V, O'neil CL and Wang PG (2008) "Malondialdehyde" encyclopedia of reagents for organic synthesis. John wiley and Sons. New York. Pp. 66-77.
29 . Nicolosi E (2007) Origin and Taxonomy. In Khan, I. A. (ed.) Citrus Genetics, Breeding and Biotechnology. CABI. Pp. 370.
30 . Nolte KD, Hanson AD and Gage AD (1997) Prolin accumulation and methylation to prolin betaine in Citrus: implication for genetic engineering of stress resistance. American Society Horticultural Science. 122(1): 8-13.
31 . Pavlousek P (2011) Evaluation of drought tolerance of new grapevine rootstock hybrids. Environment Biology. 32: 543-549.
32 . Pryor WA and Stanley JP (1975) A suggested mechanism for the production of malonaldehyde during the antioxidation of polyunsaturated fatty acids, nonenzymatic production of prostaglandin endoperoxides during autoxidation. Organells. 40(24): 3615-3617.
33 . Reezi S, Babalar M and Kalantari S (2009) Silicon alleviates salt stress, decreases malondialdehyde content and effects petal color of salt-stressed cut rose (Rosa X hybrida L.) 'Hot lady'. African Journal Biotechnology. 8(8): 1502-1508.

34 . Rhodes D and Samaras Y (1994) Genetic control of osmoregulation in plants. In book: Cellular and Molecular Physiology of Cell Volume Regulation CRC Press, Boca Raton, Fla. Pp. 347-361.

35 . Rodríguez-Gamir J, Primo-Millo E, Forner JB and Forner-Giner MA (2010) Citrus rootstock responses to water stress. Scientia Horticulturae. 126: 95-102.
36 . Siripornadulsil S, Traina S, Verma DPS and Sayre RT (2002) Molecular mechanisms of proline-mediated to toxic heavy metals in transgenic microalgae. Plant Cell. 14: 2837-2847.
37 . Somogyi M (1952) Note on sugar determination. Journal of Biology and Chemistry. 195: 19-23.
38 . Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K and Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell. 11: 1195-1206.
39 . Wang S, Liang D, Li C, Hao Y, Ma F and Shu H (2011) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought tolerant and drought sensitive apple rootstocks. Plant Physiology and Biochemistry. 51: 81-89.
40 . Xie SX, Lu XP, Ni Q and Zhao XL (2012) The effect of water stress on ABA, Jaand physiological characteristic of Citrus. XII International Citrus Congress. Pp. 138-145.