نوع مقاله : مقاله پژوهشی

نویسندگان

1 ‏ کارشناس ارشد، گروه زراعت، دانشکدۀ تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه زراعت، دانشکدۀ تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 کارشناس ارشد، گروه زراعت، دانشکدۀ تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

این تحقیق به‌منظور کمّی‏سازی واکنش سرعت جوانه‌زنی گیاه دارویی مرزه (hortensis L. Satureja) نسبت به دما و پتانسیل آب انجام گرفت. بدین­منظور، جوانه‌زنی این گیاه تحت تأثیر تیمار‏های دمایی (12، 15، 20، 25، 30، 35، 37 و 40 درجۀ سانتی‌گراد) و پتانسیل‏های آب (صفر، 1/0-، 3/0-، 5/0- و 7/0- مگاپاسکال) در آزمایشگاه تحقیقات بذر دانشگاه علوم کشاورزی و منابع طبیعی گرگان در سال 1392 بررسی شد. نتایج نشان داد تأثیر دما، پتانسیل آب و اثر متقابل آنها بر حداکثر درصد جوانه‌زنی، سرعت در 50 درصد جوانه‌زنی و زمان رسیدن به 10، 50 و 90 درصد جوانه‌زنی معنادار بود. همچنین با کاهش پتانسیل آب، درصد و سرعت جوانه‌زنی کاهش یافت. با افزایش دما تا دمای 25 درجۀ سانتی‌گراد درصد و سرعت جوانه‌زنی افزایش و پس از آن کاهش یافت. با ارزیابی سه مدل رگرسیون غیر‏خطی شامل مدل دو‏تکه‏ای، دندان‌مانند و بتا، مدل بتا به عنوان مدل برتر انتخاب و دماهای پایه، مطلوب و سقف به ترتیب 56/7، 98/23 و 40 درجۀ سانتی‌گراد و زمان بیولوژیک جوانه‌زنی در پتانسیل صفر (تیمار شاهد) 17/91 ساعت برآورد شد. دماهای کاردینال جوانه‌زنی به‌طور معنادار تحت تأثیر پتانسیل آب قرار نگرفت، اما زمان بیولوژیک جوانه‌زنی به ازای کاهش یک مگاپاسکال پتانسیل آب، 64/17 ساعت افزایش یافت.
 

کلیدواژه‌ها

عنوان مقاله [English]

Using nonlinear regression models to quantify germination response of annual savory to temperature and water potential

نویسندگان [English]

  • amirhasan khodabakhshi 1
  • Behnam Kamkar 2
  • nafiseh khalili 3

1 Former M.Sc. Student, Faculty of Plant Production, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Proffessor, Faculty of Plant Production, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Former M.Sc. Student, Faculty of Plant Production, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

چکیده [English]

This study was conducted to quantify germination response of annual savory (Satureja hortensis L.) to temperature and water potential. For this purpose, seeds were exposed to different temperature (12, 15, 20, 25, 30, 35, 37 and 40°C) and water potential (zero, -0.1, -0.3, -0.5 and -0.7 MPa) treatments in Seed Research Lab., Gorgan University of Agricultural Sciences and Natural Resources in 2013. Results indicated that temperature and water potential and interacted effects had significant effect on maximum germination percentage, germination rate (reciprocal time to 50 percent germination), and time to 10, 50 and 90 percent germination. Along with water potential decrement, both germination percentage and rate decreased. With temperature increasing to optimum temperature, both germination percentage and rate increased, while it decreased from optimum temperature onward. Assessment of three nonlinear regression models including segmented, dent-like and beta models revealed that the last one was selected as the superior model. Based on the superior model (Beta), base, optimum and ceiling temperatures were estimated as 7.56, 23.98 and 40°C, respectively. Biological hours for control treatment (zero potential water) was calculated as 91.17 hours. Cardinal temperatures were not affected by water potential, but biological hours for germination was delayed as 17.64 hours per each unit water potential increment.
 

کلیدواژه‌ها [English]

  • Beta Model
  • Biological time
  • cardinal temperatures
  • dent-like model
  • Segmented model
 
1 . اشراقی‌نژاد م، کامکار ب و سلطانی ا (1389) برآورد دماهای کاردینال برای مدلسازی روز تا سبز شدن در ارزن دم‌روباهی. اولین کنفرانس بین‌المللی مدلسازی گیاه، آب، خاک و هوا: 112-101.
2 . اکرم قادری ف (1387) مطالعۀ نمو کیفیت بذر، جوانه‌زنی، طول عمر و زوال بذر در برخی گیاهان دارویی: کدو تخم­کاغذی (Cucurbita pepo. convar. var. styriaca)، سیاه­دانه (Nigella sativa L.) و گاوزبان (Borago officinalis L.). دانشگاه علوم کشاورزی و منابع طبیعی گرگان. رسالۀ دکتری.
3 . حیدری ز (1392) تعیین دماهای کاردینال و زمان حرارتی لازم برای جوانه‌زنی بذور ماریتیغال با استفاده از مدل‏های رگرسیون غیرخطی. دانشگاه آزاد اسلامی واحد دامغان. پایان‌نامۀ کارشناسی ارشد.
4 . حیدری ز (1392) تعیین دماهای کاردینال و زمان حرارتی لازم برای جوانه‌زنی بذور رازیانه با استفاده از مدل‏های رگرسیون غیرخطی. دانشگاه آزاد اسلامی واحد دامغان. پایان‌نامۀ کارشناسی ارشد.
5 . خلیلی ن (1391) پیش­بینی سبز شدن گیاه جو (Hordeum vulgare L.) در واکنش به دما، پتانسیل آب و عمق کاشت. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. پایان‌نامۀ کارشناسی ارشد.
6 . عیسوند ح، شرفی ا و اسماعیلی ا (1391) بررسی اثرهای هیدرو و اسموپرایمینگ در دماهای مختلف بر جوانه‌زنی و رشد گیاهچۀ مرزۀ خوزستانی (Satureja khuzistanica Jamzad) تحت تنش پتانسیل آبی. تحقیقات گیاهان دارویی و معطر ایران. 2: 357-343.
7 . گالشی س، فرزانه س، سلطانی ا و رضایی ج (1385) ارزیابی واکنش چهل ژنوتیپ پنبه به تنش خشکی در مرحلۀ جوانه‌زنی. علوم کشاورزی و منابع طبیعی. 13: 57-42.
8 . نوذری­نژاد م، زینلی ا، سلطانی ا، سلطانی ا و کامکار ب (1392) کمی­سازی واکنش جوانه‌زنی گندم در واکنش به دما و پتانسیل آب. تولید گیاهان زراعی. (4)6: 135-117.
9 . Ahmadi M, Kamkar B, Soltani A and Zeinali E (2010) Evaluation of non-Linear regression models to predict stem elongation rate of wheat Tajan cultivar in response to temperature and Photoperiod. Plant Production. 2(4): 39-54.
10 . Balbaki RZ, Zurayk RA, Blelk MM and Tahouk SN )1999( Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Science and Technology. 27: 291-302.
11 . Baskin CC and Baskin JM )2001( Seeds ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego, California. 666.
12 . Bewley JD (1997) Seed germination and dormancy. Plant Cell. 9: 1055-1066.
13 . Brar GS, Gomez JF, McMichael BL, Matches AG and Taylor HM )1991( Germination of twenty forage legumes as influenced by temperature. Agronomy. 83: 173-175.
14 . Brodford KJ )2002( Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50: 248-260.
15 . Covell S, Ellis R, Roberts E and Summerfield R )1986( The influence of temperature on seed germination rate in grain legumes. Experimental Botany. 37: 705-715.
16 . Derakhshan A, Gherekhloo J, Vidal R and De Prado R (2014) Quantitative Description of the Germination of Littleseed Canarygrass (Phalaris minor) in Response to Temperature. Weed Science. 62(2): 250-257.
17 . Foley ME and Fennimore SA (1998) Genetic basis for seed dormancy. Seed Science Research. 8: 173-179.
18 . Grundy AC, Phelps K, Reader RJ and Burston S )2000( Modeling the germination of Stellaria media using the concept of hydrothermal time. New Phytology. 148: 433-444.
19 . Guerke WR, Gutormson T, Meyer D, McDonald M, Mesa JC, Robinson J and Tekrony D )2004( Application of hydrotime analysis in seed testing. Seed Technology. 26(1): 75-85.
20 . Hardegree SP )2006( Predicting germination response to temperature I. Cardinal temperature models and subpopulation-specific regression. Annals of Botany. 97: 1115-1125.
21 . Jacobsen SE and Bach AP )1998( The influence of temperature on seed germination rate in quinoa) Chenopodium quinoa Willd). Seed Science and Technology. 26: 515-523.
22 . Jalilian A, Mazaheri D, Taval afshar R, Rahimian R, Abdollahian H and Gohari J (2004) Evaluation of basic temperature and germination trend for monogerm sugar beet at different temperature. Sugar Beet. 20(2): 97-112.
23 . Kamkar B (2011) GS_2011. A pocket software to calculate germination and emergence indices. GUASNR.
24 . Kamkar B, Ahmadi M, Soltani A and Zeinali E (2008) Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Science and Biotechnology. 2: 53-57.
25 . Kamkar B, Jami Al-Ahmadi M, Mahdavi-Damghani A and Villalobos F (2012) Quantification of the cardinal temperatures and thermal time requirement of opium poppy Papaver somniferum L. seeds germinate using non-linear regression models. Industrial Crops and Products. 35: 192-198.
26 . Kebreab E and Murdoch AJ (2000) The effect of water stress on the temperature range for germination of Orobanches aegyptiaca seeds. Seed Science Research. 10: 127-133.
27 . Meyer SE and Pendleton RL (2000) Genetic regulation of seed dormancy in Purshia tridentata Rosaceae. Annals of Botany. 85: 521-529.
28 . Michel BE (1983) Evaluation of water potential of solution of polyethylene glycol 8000 both in absence and presence of other solutes. Plant Physiology. 72: 66-70.
29 . Okuzanya O (1980) Germination and growth of Celosia cristata L. under light and temperature regimes. American Journal of Botany. 67: 854-858.
30 . Piper EL, Boote KJ, Jones JW and Grimm SS (1996) Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science. 36: 1606-1614.
31 . Ramin A (1997) The influence of temperature on germination taree irani. Seed Science and Technology. 25: 419-426.
32 . Schimpf D, Filnt D and Palmbland I (1977) Representation of germination curves with the logistic function. Annual of Botany. 41: 1357-1360.
33 . Soltani A, Robertson M, Torabi B, Yousefi-Daz M and Sarparast R (2006) Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agriculture For Meteorology. 138: 156-167.
34 . Soltani A, Zeinali E, Galeshi S and Latifi N (2001) Genetic variation for and interrelationships among seed vigor traits in wheat from the caspian sea coast of Iran. Seed Science and Technology. 29: 653-662.
35 . Tan DKY, Wearing AH, Rickert KG and Birch CJ (1997) A systems approach to developing model that predicts crop ontogeny and maturity in broccoli in south-east Queensland. In: Wollin, A.S., Rickert, K.G. (Eds.), Third Australia and New Zealand Systems Conference Proceedings Linking People, Nature, Business and Technology. The University of Queensland, Gatton, Pp. 179-187.
36 . Thygerson T, Harris JM, Smith BN, Hansen LD, Pendleton RL and Booth DT (2002) Metabolic response to temperature for six populations of winterfat (Eurotia lanata). Thermochimica Acta. 394: 211-217.
37 . Ueno K (2003) Effect of Temperature During of Immature Seed Germination. Seed Sciense and Thechnology. (31): 587-595.
38 . Windauer L, Altuna A and Benech-Arnold R (2007) Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products. 25: 70-74.
39 . Yin X, Kropff MJ, McLaren G and Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agric Forest Meterol. 77: 1-16.