کمّی‌سازی و تعیین پارامترها و دامنه‌های پاسخ به دمای بذر و گیاهچه گیاه آزی‌وش با استفاده از مدل‌های رگرسیون غیرخطی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه زراعت دانشکدۀ تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشجوی کارشناسی ارشد رشتۀ مهندسی کشاورزی اکولوژیک، دانشکدۀ کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 دانش‌آموخته کارشناسی ارشد، گروه زراعت، دانشکدۀ تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 مربی گروه زراعت، دانشکدۀ تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

آزی‌وش (Corchorus olitorius L.) یک گیاه دارویی باارزش به‌شمار می‌رود که اولین بار در ایران در سال 1392 کشت و تولید شد. در این مطالعه، واکنش جوانه‌زنی این گیاه نسبت به دما (10، 15، 20، 25، 30، 35، 40، 45 و 50 درجۀ سانتی‌گراد) در آزمایشگاه بذر دانشگاه علوم کشاورزی و منابع طبیعی گرگان در سال 1390 بررسی شد. اثر دما بر حداکثر درصد جوانه‌زنی (MGP)، سرعت جوانه‌زنی (R50)، یکنواختی جوانه‌زنی (GU)، زمان تا رسیدن به 10 (D10)، 50 (D50) و 90 (D90) درصد حداکثر جوانه‌زنی، درصد گیاهچۀ نرمال (NS%) و طول گیاهچه (LS) در سطح 1 درصد معنادار بود. همچنین واکنش جوانه‌زنی به دما تا رسیدن به 10، 50 و 90 درصد حداکثر جوانه‌زنی با استفاده از سه مدل رگرسیون غیر‌خطی (مدل‌های دو‌تکه‌ای، دندان‌مانند و بتا) ارزیابی شد و مدل بتا، مدل برتر تعیین شد. دماهای کاردینال در 50 درصد حداکثر جوانه‌زنی شامل دمای پایۀ 18/10 درجۀ سانتی‌گراد، دمای بهینۀ 31/37 درجۀ سانتی‌گراد، دمای سقف 50 درجۀ سانتی‌گراد و زمان بیولوژیک 56/13 ساعت بود. نتایج مدل بتا در برازش طول گیاهچه و درصد گیاهچۀ نرمال نشان داد ظهور گیاهچه در دامنۀ دمایی 11 تا 44 درجۀ سانتی‌گراد، بیشترین طول گیاهچه در دمای 34/35 درجۀ سانتی‌گراد و بیشترین درصد گیاهچه‌های نرمال در دمای 31 درجۀ سانتی‌گراد اتفاق افتاده است.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of temperature-related parameters and response ranges of Almolookhiyeh seeds and seedlings using nonlinear regression

نویسندگان [English]

  • Behnam Kamkar 1
  • Ommolbanin Gorzin 2
  • nafiseh khalili 3
  • mohammadhosein ghorbani 4
1 . Associate Professor, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricualtural Sciences and Natural Resources, Gorgan, Iran
2 M.Sc. Student, Department of Agronomy and Crop Breeding, Faculty of Agriculture, University of Shahrood, Shahrood, Iran
3 Graduated M.Sc., Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Instructor, Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricualtural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Almolookhiyeh (Corchorus olitorius L.) known in the world as a valuable medicinal plant that was produced for the first time in Iran in 2011. This study was aimed to quantify germination response of Almolookhiyeh to temperature. For this purpose, seeds were exposed to different constant temperatures (10 ,15, 20, 25, 30, 35, 40, 45 and 50°C) in Seed Research Lab, Gorgan University of Agricultural Sciences and Natural Resources in 2011. Results showed that the effect of temperature on the maximum germination percentage (MGP), germination rate (R50), germination uniformity (GU), and time to 10, 50 and 90 percent germination as (D10), (D50) and (D90), the percentage of normal seedlings (NS%) and seedling length (LS) was highly significant. Assessment of three nonlinear regression models including segmented, dent-like and beta models based on 10, 50 and 90 percent germination revealed that beta model was superior to other models. Based on the superior model (Beta), base, optimum and ceiling temperatures were estimated as 10.18, 37.31 and 50°C, respectively. Biological hours also were calculated as 13.56 hours. Using beta model to regress seedling length against temperature and normal seedling percentage versus temperature showed that seedling emergence, the maximum seedling length and the highest normal seedling percentage were occurred at 11 to 44, 35.34 and 31°C, respectively.

کلیدواژه‌ها [English]

  • Almolookhiyeh
  • Beta Model
  • Biological time
  • cardinal temperatures
  • normal seedling

 

1 . اشراقی­نژاد م، کامکار ب و سلطانی ا (1389) برآورد دماهای کاردینال برای مدلسازی روز تا سبز شدن در ارزن دم­روباهی. اولین کنفرانس بین­المللی مدلسازی گیاه، آب، خاک و هوا: 112-101.

2 . اکرم قادری ف (1387) مطالعۀ نمو کیفیت بذر، جوانه‌زنی، طول عمر و زوال بذر در برخی گیاهان دارویی: کدو تخم‌کاغذی (Cucurbita pepo. convar. var. styriaca)، سیاه­دانه (Nigella sativa L.) و گاو زبان (Borago officinalis L.). دانشگاه علوم کشاورزی و منابع طبیعی گرگان. رسالۀ دکتری.

3 . حیدری ز (1392) تعیین دماهای کاردینال و زمان حرارتی لازم برای جوانه‌زنی بذور ماریتیغال با استفاده از مدل‏های رگرسیون غیرخطی. دانشگاه آزاد اسلامی واحد دامغان. پایان‌نامۀ کارشناسی ارشد.

4 . حیدری ز (1392) تعیین دماهای کاردینال و زمان حرارتی لازم برای جوانه‌زنی بذور رازیانه با استفاده از مدل‏های رگرسیون غیرخطی. دانشگاه آزاد اسلامی واحد دامغان. پایان‌نامۀ کارشناسی ارشد.

5 . خلیلی ن (1391) پیش­بینی سبز شدن گیاه جو (Hordeum vulgare L.) در واکنش به دما، رطوبت و عمق کاشت. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. پایان‌نامۀ کارشناسی ارشد.

6. سلطانی ا (1390) اکولوژی بانک بذر کلزای خودرو و خردل وحشی: تولید بذر، توزیع عمودی، تغییرات فصلی کمون، جوانه‌زنی و سبز شدن. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. رساله دکتری.

7. قربانی م، زینلی ا و راه‏کان ر (1391) بررسی امکان کاشت گیاه آزی‌وش (Corchorus olitorius L.) در شرایط آب‌وهوایی گرگان. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گزارش طرح پژوهشی.

 

8 . Ahmadi M, Kamkar B, Soltani A and Zeinali E (2010) Evaluation of non-Linear regression models to predict stem elongation rate of wheat Tajan cultivar in response to temperature and Photoperiod. Plant Production. 2(4): 39-54.

9 . Bewley JD (1997) Seed germination and dormancy. Plant Cell. 9: 1055-1066.

10 . Bewley J and Black M (1994) Seeds Physiology of Development and Germination. New York.

11 . Foley ME and Fennimore SA (1998) Genetic basis for seed dormancy. Seed Science Research. 8: 173-179.

12 . Grubben G and Denton O (2004) Plant Resources of Tropical Africans, Volume 2: Vegetables. 667 p.

13 . Harper J (1977) Population Biology of Plants. Academic Press New York. 222 p.

14 . Innami S, Ishida H, Nakamura K, Kondo M, Tabata K, Koguchi T, Shimizu J and Furusho T (2005) Jew’s mellow leaves Corchorus olitorius suppress elevation of postprandial blood glucose levels in rats and humans. International Journal for Vitamin and Nutrition Research. 75(1): 39-46.

15 . Jame YW and Cutforth HW (2004) Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agriculture and Forest Meteorology. 124: 207-218.

16 . Kamaha C and Magure Y (1992) Effect of temperature on germination of six winter wheat cultivars. Seed Science and Technology. 20: 181-185.

17 . Kamkar B (2011) GS_2011. A pocket software to calculate germination and emergence indices. GUASNR.

18 . Kamkar B, Ahmadi M, Soltani A and Zeinali E (2008) Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Science and Biotechnology. 2: 53-57.

19 . Kamkar B, Jami Al-Ahmadi M, Mahdavi-Damghani A and Villalobos F (2011) Quantification of the cardinal temperatures and thermal time requirement of opium poppy Papaver somniferum L. seeds germinate using non-linear regression models. Industrial Crops and Products. 35: 192-198.

20 . Kebreab E and Murdoch AJ (2000) The effect of water stress on the temperature range for germination of Orobanches aegyptiaca seeds. Seed Science Research. 10: 127-133.

21 . Meyer SE and Pendleton RL (2000) Genetic regulation of seed dormancy in Purshia tridentata Rosaceae. Annals of Botany. 85: 521-529.

22 . Mc Donald M and Copeland L (1997) Seed Production Principles and Practices. Chapman and Hall U.S.A. 79p.

23 . Mguis K, Albouchi A and Ben Brahim N (2014) Germination responses of Corchorus olitorius L. to salinity and temperature. African Journal of Agricultural Resarch. 9: 65-73.

24 . Mwale SS, Azam–Ali SN, Clark JA, Bradley RG and Chatha MR (1994) Effect of temperature on the germination of sunflower Helianthus annus L. Seed Science and Technology. 22: 565-571.

25 . Nkomo M and Kambizi L (2008) Effects of pre-chilling and temperature on seed germination of Corchorus olitorius L. (Tiliaceae) (Jew’s Mallow), a wild leafy vegetable. African Journal of Biotechnology. 8(6): 1078-1081.

26 . Oyedele D, Asonugho C and Awotoye O (2006) Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application. Agriculture Food Chemistry. 5: 1446-1453.

27 . Palada M and Chang L (2003) Suggested Cultural Practices for Jute Mallow. Inter Coope Guide. 2: 1-4.

28 . Piper EL, Boote KJ, Jones JW and Grimm SS (1996) Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science. 36: 1606-1614.

29 . Ramin A (1997) The influence of temperature on germination taree irani. Seed Science and Technology. 25: 419-426.

30 . Soltani A, Robertson M, Torabi B, Yousefi-Daz M and Sarparast R (2006) Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agriculture and  Forest meteorology. 138: 156-167.

31 . Tan DKY, Wearing AH, Rickert KG and Birch CJ (1997) A systems approach to developing model that predicts crop ontogeny and maturity in broccoli in south-east Queensland. In: Wollin AS, Rickert K.G (Eds.), Third Australia and New Zealand Systems Conference Proceedings Linking People, Nature, Business and Technology. The University of Queensland Gatton. Pp. 179-187.

32. Yin X, Kropff MJ, McLaren G and Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agriculture and Forest Meteorology. 77: 1-16.