نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه گیلان، ایران

2 دانشیار، گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه گیلان، ایران

3 دانشیار بخش تحقیقات باغبانی، مؤسسۀ اصلاح و تهیۀ نهال و بذر، کرج، ایران

4 استادیار بخش تحقیقات اصلاح خاک و مدیریت پایدار اراضی، مؤسسۀ تحقیقات خاک و آب، کرج، ایران

چکیده

به‌منظور ارزیابی اثر تنش شوری بر خصوصیات رویشی و غلظت عناصر غذایی در برگ و ریشه‌های تعدادی از ژنوتیپ‌های بادام، آزمایشی با دو عامل ژنوتیپ در چهار سطح شامل ‘شاهرود 12’، ‘تونو’ و ژنوتیپ ’16-1‘ پیوندشده روی پایۀ GF677و پایۀ GF677 و شوری آب آبیاری در پنج سطح شامل غلظت‌های صفر، 2/1، 4/2، 6/3 و 8/4 گرم در لیتر کلرید سدیم (به‌ترتیب با هدایت الکتریکی 5/0، 5/2، 9/4، 3/7 و 8/9 دسی‌زیمنس بر متر) در گلخانۀ تحقیقاتی مؤسسۀ اصلاح و تهیۀ نهال و بذر در سال 1392 انجام گرفت. با اعمال تنش شوری و افزایش غلظت آن، میزان قطر پیوندک، ارتفاع پیوندک، تعداد برگ تولیدی و درصد برگ‌های سبز، کاهش و درصد برگ‌های نکروزه و ریزش‌یافته افزایش یافتند. بررسی غلظت عناصر غذایی در برگ و ریشه نشان داد که در همة ژنوتیپ‌ها، بیشترین میزان کلر (94/4 درصد) و سدیم (12/2 درصد)، نسبت سدیم/پتاسیم (03/2)، سدیم/کلسیم (92/1)، سدیم/منیزیم (81/6)، سدیم/فسفر (07/14) و کمترین کلسیم (06/1 درصد)، منیزیم (33/0 درصد)، فسفر (146/0 درصد)، روی (7/32 قسمت در میلیون) و مس (33/9 قسمت در میلیون) برگ، در تیمار 8/9 دسی‌زیمنس بر متر کلرید سدیم مشاهده شد. نوع پیوندک در ممانعت از جذب سدیم و کلر توسط ریشه و انتقال آن به قسمت هوایی مؤثر است. ‘شاهرود 12’ در همة سطوح شوری، دارای کمترین مقدار کلر و سدیم و کمترین نسبت سدیم/پتاسیم، سدیم/کلسیم، سدیم/منیزیم و سدیم/ فسفر و نیز بیشترین نسبت کلر/سدیم بود. همچنین این رقم توانست در سطوح بالای شوری (3/7 دسی‌زیمنس بر متر)، از طریق افزایش پتاسیم (65/1 درصد)، مس (62/9 قسمت در میلیون)، آهن (30/22 قسمت در میلیون) و روی (45/50 قسمت در میلیون) بیشتر از دیگر ژنوتیپ‌های مورد بررسی، با تأثیرات مخرب سدیم مقابله کند. رقم ‘شاهرود 12’ متحمل‌ترین رقم به شوری در بین تیمارها بود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of salinity stress on growth characteristics and concentrations of nutrition elements in almond ‘Shahrood 12’, ‘Touno’ cultivars and ‘1-16’ genotype budded on GF677 rootstock

نویسندگان [English]

  • Ali Momenpour 1
  • Davood Bakhshi 2
  • Ali Imani 3
  • Hamed Rezaie 4

1 Ph.D. Student, Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran.

2 . Associate Professor, Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran

3 . Associate Professor, Department of Horticulture Reasearch, Seed and Plant Improvement Institute, Karaj, Iran.

4 Asistant Professor, Department of Reclamation Research, Soil and Water Research Institute, Iran.

چکیده [English]

The types of scion-rootstock compound and level of salinity affect on growth characteristics and concentration of nutrition elements of almond leaves and roots. In order to evaluate the effect of salinity stress on vegetative traits and concentration of nutrition elements of leaves and roots almond genotypes, a experiment was carried out with two factors; cultivar in four levels including ‘Shahrood 12’, ‘Touno’, ‘1-16’ budded on GF677 rootstock and GF677 and water salinity in five levels including zero, 1.2, 2.4, 3.6 and 4.8 g/l of sodium chloride salt (with the electrical conductivity of 0.5, 2.5, 4.9, 7.3 and 9.8 ds/m, respectively). The result showed that with increasing salinity concentration, branch height, branch diameter, and number of produced leaves and percentage of green leaves have been reduced but percentage of necrotic leaves and percentage of downfall leave were increased. The result showed that in the total genotypes studied, the highest rate of Na+ (2.12%), Cl- (4.94%), ratio Na+/K+ (2.03%), ratio Na+/Ca++ (1.92%),  ratio Na+/Mg++ (6.81%),  ratio Na+/P (14.07%), and the lowest rate of Ca++ (1.06%), Mg++ (0.33%), P (0.146%), Zn++ (32.7 ppm), Cu++ (9.33 ppm), in leaves was observed in treatment 9.8 ds/m of NaCl. The result showed that type of scion was affected in obstruction of Na+ absorption by the roots and their transported to leaves. In the total level of salinity studied, ‘Shahrood 12’ was the lowest rate of Na+, Cl-, ratio Na+/K+, ratio Na+/Ca++, ratio Na+/Mg++, ratio Na+/P and the highest ratio Cl-/ Na+. Also, this cultivar can tolerate high level of salinity (7.3 ds/m), by increasing content of K+ (1.65%),Cu++ (9.62 ppm), Fe++ (22.30 ppm), Zn++ (50.45 ppm) more than other genotypes studied in this research, to deal with the devastating effects of Na+. Overall, ‘Shahrood 12’ was recognized as the most tolerant cultivar to salinity stress.
 

کلیدواژه‌ها [English]

  • almond
  • GF677
  • Macronutrients
  • micronutrients
  • Salinity stress
  • ‘Shahrood 12’
 
1 . امامی ع (1375) روش­های تجزیة گیاه. سازمان تحقیقات، آموزش و ترویج کشاورزی. مؤسسۀ تحقیقات خاک و آب. 130 ص.
2 . اورعی م،  طباطبایی ج، فلاحی ا و ایمانی ع (1388) اثرات تنش شوری و پایه بر رشد، شدت فتوسنتز، غلظت عناصر غذایی و سدیم درخت بادام. علوم باغبانی. 23(2): 140-131.
3 . بای­بوردی ا (1392) ارزیابی تحمل ارقام دیرگل بادام به شوری. تولید و فرآوری محصولات باغی و زراعی. 3(3): 225-217.
4 . حیدری شریف­آباد ح (1380) گیاه و شوری. مؤسسۀ تحقیقات جنگل­ها و مراتع کشور. 76 ص.
5 . رضایی م، لسانی ح، بابالار م و طلایی ع (1385) اثر تنش سدیم کلرید بر شاخص­های رشد و میزان عناصر پنج رقم زیتون. علوم کشاورزی ایران. 37(2): 301-293.
6 . علایی ش و تفضلی ع (1382) اثرهای شوری کلرید سدیم، کینتین و سایکوسل بر تجمع برخی از عناصر در زیتون (Olea europea L.) رقم دزفول. علوم و فنون باغبانی ایران. 4(1 و 2): 10-1.
7 . گریگوریان و، جوادی ص، کسرائی ر، مطلبی آذر ع و دژم­پور ج (1381) تعیین تحمل به شوری کلرور سدیمی در دانهال­های چند رقم بادام. علوم و فنون باغبانی ایران. 3(1 و 2): 14-1.
8 . میرمحمدی میبدی س ع و قره­یاضی ب (1381) جنبه­های فیزیولوژیک و به­نژادی تنش شوری گیاهان. انتشارات دانشگاه صنعتی اصفهان. 274 ص.
9 . Alpaslan M, Inal A, Gunes A, Cikili Y and Ozcan H (1999) Effect of zinc treatment on the alleviation of sodium and chloride injury tomato (Lycopersicum esculentum L. Mill, c.v lale) grown under salinity. Turkish Journal of Botany. 23: 1-6.
10 . Bolat I, Kaya C, Almaca A and Timucin S (2006) Calcium sulfate improve salinity tolerance in rootstock of plum. Journal of Plant Nutrition.29: 553-564.
11 . Garcia-Sanchez F and Syvertsen JP (2006) Salinity tolerance of Cleopatra mandarin and carrizo citrange citrus rootstock seedlings is affected by CO2 enrichment during growth. Journal of the American Society for Horticultural Science. 131: 24- 31.
12 . Grattan SR (2002) Irrigation water salinity and crop production. University of California. Agriculture and Natural Resourses Publication 8066. 1: 1-9.
13 . Karakas B, Bianco RL and Rieger M (2000) Association of marginal leaf scorches with sodium accumulation in salt-stressed peach. Journal of the American Society for Horticultural Science. 35(1): 83-84.
14 . Maas EV and Hoffman GJ (1977) Crop salt tolerance: current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.                             
15 . Marschner H (1995) Functions of mineral nutrients: Micronutrients. Mineral nutrition of higher plants. 2nd ed. Academic Press Limited. San Diego. CA, Pp. 313-396.
16 . Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sciences. 7: 405-410.
17 . Montaium R, Hening H and Brown PH (1994) The relative tolerance of six Prunus rootstocks to boron and salinity. Journal of the American Society for Horticultural Science. 6: 1169-1175.
18 . Munns R and Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651-681.
19 . Noitsakis B, Dimassi K and Therios I (1997) Effect of NaCl induced salinity on growth, chemical composition and water relation of two almond (Prunus amygdalus L.) cultivars and the hybrid GF677 (Prunus amygdalus- Prunus persica). Acta Horticulturae. 449: 641-648.
20 . Papadakis IE, Veneti G, Chatzissavvidis C, Sptiropoulos TE, Dimassi N and Therios I (2007) Growth, mineral composition, leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress. Journal of Soil Science and Plant Nutrition. 53: 252-258.
21 . Rahemi M, Nagafian Sh and Tavallaie V (2008) Growth and chemical composition of hybrid GF677 influenced by salinity levels of irrigation water. Journal of Plant Sciences. 7(3): 309-313.
22 . Rahmani A, Daneshvar HA and Sardabi H (2003) Effect of salinity on growth of two wild almond species and two genotypes of the cultivated almond species (P. dulcis). Iranian Journal of Forest and Poplar Research. 11(1): 202-208.
23 . Raven JA, Evans MCW and Krob RE (1999) The role of trace metals in photosynthetic electron transport in O2- evolving organisms. Photosynthesis Research. 60: 111-149.
24 . Shani U and Ben-Gal A (2005) Long-term response of grape vines to salinity: osmotic effects and ion toxicity. American Journal of Enology and Viticulture. 56: 2-12.
25 . Shibli RA, Shatnawi MA and Swaidat IQ (2003) Growth, osmotic adjustment and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Communications in Soil Science and Plant Analysis.  34: 1969-1979.
26 . Staples RC and Toenniessen GH (1984) Salinity tolerance in plants. John Wiley and Sons. Pp. 443.
27 . Szczerba MW, Britto DT and Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. Journal of Plant Physiology. 166: 447-466.
28 . Szczerba MW, Britto DT, Balkos KD and Kronzucker HJ (2008) NH4+-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). Experimental Botany. 59: 3415-3423.
29 . Yruela I (2005) Copper in plants. Brazilian Journal of Plant Physiology. 17: 145-156.