1 . تدین م ر، فلاح س ا، فدایی تهرانی ع ا، و نوروزی س (1392) اثرات نانوتیوب کربن چندجداره و نانونقره بر برخی شاخصهای فیزیولوژیکی و مورفولوژیک گیاه باقلا (Vicia faba L.). فرآیند و کارکرد گیاهی. 2(3): 72-61.
2 . جابرزاده ا، معاونی پ، توحیدیمقدم ح ر و مرادی ا (1389) بررسی اثر محلولپاشی نانو ذرات دیاکسید تیتانیوم بر روی برخی خصوصیات زراعی گندم تحت شرایط تنش خشکی. اکوفیزیولوژی گیاهان زراعی 4: 301-295.
3 . دینیترکمانی م ر و کاراپتیان ژ (1386) بررسی خصوصیات فیزیکی و شیمیایی مهم دانه در 10 رقم کنجد (Sesamum indicum L.). زیستشناسی ایران. 20(4): 333-327.
4 . کافی م، زند ا، کامکار ب، عباسی ف، مهدوی دامغانی م و شریفی ح ر (1388) فیزیولوژی گیاهی. چاپ سوم، انتشارات جهاد دانشگاهی مشهد.
5 . کوچکی ع و سرمدنیا غ ح (1388) فیزیولوژی گیاهان زراعی. چاپ پانزدهم، انتشارات جهاد دانشگاهی مشهد.
6 . نوروزی س، تدین م ر و نوروزی م (1391) بررسی اثر نانواکسید تیتانیوم بر برخی خصوصیات کتان (Linum usitatissimum L.). دوازدهمین کنگرۀ علوم زراعت و اصلاح نباتات ایران.
7 . نوروزی س (1391) اثر نانوذرات نقره، روی و نانوتیوب کربنی چندجداره بر گرهبندی، رشد، عملکرد و اجزای عملکرد گیاه باقلا (Vicia faba L.). دانشگاه شهرکرد. شهرکرد. پایاننامۀ کارشناسی ارشد رشتۀ اگرواکولوژی.
8 . Azari A and Khajepour MR (2003) Effect of planting pattern on growth, development, grain yield and yield components in sunflower cv. Kooseh Isfahan in spring planting. Journal of Science Technology Agriculture. Natural Resources. 7(1): 155-167.
9 . Barcelo J and Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrient. 13: 1-37.
10 . Breebse Jones D (1931) Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. United States Department of Agriculture Washington. P. 1-22.
11 . Brunner TI, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A and Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environmental Science and Technology. 40: 4374-4381.
12 . Drazkiewicz M, Skorzynska-Polit E and Krupa Z (2004) Copper induced oxidative stress and antioxidant defense in Arabidopsis thaliana. Bio Metals. 17: 379-387.
13 . Fediuc E and Laszlo E (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in phragmites Australia and Typha latifolia. Plant Physiology. 5: 129-132.
14 . Franklin N, Rogers N, Apte S, Batley G, Gadd G and Casey P (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science and Technology. 41: 8484-8490.
15 . Gallego SM, Bonavides MP and Tomaro ML (1999) Effect of cadmium ion antioxidant defense system in sunflower contyledons. Biologia Plantarum. 42: 49-55.
16 . Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C and Yang P (2006) Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biological Trace Element Research. 11(1-3): 239-254.
17 . Hirt H, Casari G and Barta A (1989) Cadmium enhanced gene expression in suspension culture cells of tobacco. Planta. 179(3): 414-426.
18 . Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Zhongrui L, Watanabe F and Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. American Chemical Society Nano. 3: 3221-3227.
19 . Lin D and Xing B (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution. 150(2): 243-250.
20 . Moaveni P, Talebi A, Farahani HA and Maroufi K (2011) Study of nano particles tio2 spraying on some yield components in barley (Hordeum vulgare L.). International Conference on Environmental and Agriculture Engineering. Pp. 115-119.
21 . Moraru CI, Panchapakesan CP, Qingrong H, Takhistov P, Sean L and Kokini JL (2003) Nanotechnology: A new frontier in food Science. Food Technology. 57(12): 24-29.
22 . Morla S, Rao R and Chakrapani R (2011) Factors Affecting Seed Germination and Seedling Growth of Tomato Plants cultured in vitro Conditions. An International Peer Review E-3. Sciences, Chemical, Biological and Physical Sciences. 1(2): 328-334.
23 . Nel A, Xia T, Madler L and Li N (2006) Toxic potential of materials at the nano level. Science. 311: 622-627.
24 . Oberdrster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives. 112(10): 1058-1062.
25 . Paschke MW, Perry LG and Redente EF (2006) Zinc toxicity thresholds for reclamation forb species. Water Air Soil Pollution. 170(1-4): 317-330.
26 . Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja RK, Sreeprasad TS, Sajanla PR and Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 35: 905-927.
27 . Tewari RK, Kumar P, Sharma PN and Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Science. 162: 381-388.
28 . Vavilov NI (1926) Studies on the origin of cultivated plants. Nyurobiological Botany. 16: 139-248.
29 . Yang L and Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters. 158(2): 122-132.
30 . Yang K, Wang XL, Zhu LZ and Xing BS (2006) Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes.
Environmental Science and Technology. 40: 5804-5810.
31 . Zheng L, Hong F, Lu S and Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104(1): 83-91.
32 . Zhu H, Han J, Xiao JQ and Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Environmental Monitoring. 10(6): 713-717.