تأثیر تنش کم‌آبی بر برخی شاخص‌های سازگاری سلولی ژنوتیپ‌های سورگوم علوفه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه زراعت و اصلاح نباتات، دانشکدة کشاورزی، دانشگاه محقق اردبیلی، اردبیل - ایران

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشکدة کشاورزی، دانشگاه محقق اردبیلی، اردبیل - ایران.

3 دانشجوی دکتری، گروه زراعت و اصلاح نباتات، دانشکدة کشاورزی، دانشگاه محقق اردبیلی، اردبیل - ایران

چکیده

به‌منظور بررسی تغییرات برخی شاخص­های مهم سلولی چند ژنوتیپ سورگوم در شرایط کم‌آبی، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی، در گلخانة دانشگاه محقق اردبیلی در سال 1392 اجرا شد. تیمارهای آزمایش شامل تنش کم‌آبی در چهار سطح 85، 65، 45 و 25 درصد ظرفیت زراعی و سه ژنوتیپ سورگوم علوفه‌ای (KFS2، KFS6 و KFS17) بود. کم‌آبی موجب کاهش پتانسیل اسمزی، پایداری غشا و محتوای آب نسبی سلول‌ها در سطح 1 درصد و همچنین کاهش عناصر پتاسیم، کلسیم و فسفر، و افزایش سدیم و در نهایت کاهش مقدار مادة خشک شد. اثر متقابل تنش در ژنوتیپ تنها بر مقدار پرولین، قندهای محلول، پایداری غشا، محتوای آب نسبی و مادة خشک معنادار بود. ژنوتیپ KFS2 بیشترین مقدار پرولین، قندهای محلول و عناصر غذایی و در نهایت بیشترین پتانسیل اسمزی، محتوای آب نسبی، پایداری غشا و مقدار مادة خشک در شدیدترین سطح تنش (25 درصد ظرفیت زراعی) را به خود اختصاص داد. در بین صفات اندازه‌گیری‌شده، پرولین و مقدار کلسیم بیشترین سهم را در پیش‌بینی پتانسیل اسمزی و پایداری غشا داشتند. این عوامل تأثیر مهمی در عملکرد مادة خشک نیز دارند. به­طور کلی، هر ژنوتیپ از سازوکار متفاوتی برای مقابله با تنش استفاده می­کند، ولی ژنوتیپی که بتواند از روش­های سریع­تر و کم­هزینه‌تر استفاده کند، تحمل بیشتری در برابر تنش دارد و عملکرد مادة خشک بیشتری تولید می‌کند.
 
 


کلیدواژه‌ها


عنوان مقاله [English]

Study of some changes in cellular adaptation of forage sorghum genotypes during stress

نویسندگان [English]

  • Masoumeh Ghahremani 1
  • Ali Ebadi 2
  • ghasem parmoon 3
  • Soodabeh Jahanbakhsh 2
1 M.Sc. Graduated of Agronomy, Department of Agronomy, Faculty of Agriculture University of Mohaghegh Ardabili, Iran.
2 Associate Professor, Department of Agronomy, Faculty of Agriculture, University of Mohaghegh Ardabili. Iran.
3 Ph.D. Student, Department of Agronomy, Faculty of Agriculture, University of Mohaghegh Ardabili, Iran.
چکیده [English]

This study was carried out to evaluate the changes in some important cell parameters under water limitation in sorghum genotypes. A factorial experiment was conducted based on randomized completely design in greenhouse, in University of Mohaghegh Ardabili in 2014. Treatments were water stress at levels of 85, 65, 45 and 25 percent field capacity in and three genotypes of forage sorghum (KFS2, KFS6 and KFS17). The results showed that water stress reduced the osmotic potential, relative water content, cell membrane stability redecase in one percent, also the amount of potassium, calcium, phosphorus, while increased sodium content and finaly decreased biomass. Interaction between stress and genotype only proline, soluble sugars, cell membrane stability, relative water content and biomass was statistical difference. KFS2 genotype had the highest amounts of proline, soluble sugars and nutrients, higher osmotic potential, relative water content, cell membrane stability and biomass in most severe stress levels (25 percent of field capacity). The highest contribution between proline and calcium amount for osmotic potential and membrane stability prediction. These factors also play an important role in biomass production. In general we can say the genotypes used for different mechanisms to deal with stress, however, the genotypes which use faster and less expensive methods are able to have greater tolerance to stress and will a higher yield produce.
 

کلیدواژه‌ها [English]

  • Biomass
  • nutrients
  • osmotic potential
  • proline
  • water stress

 

1 . حاج­حسینی اصل ن، مرادی مقدم آ، شیرانی راد اه، حسینی ن و رسایی­فر م (1390) تأثیر تنش خشکی بر عملکرد و صفات زراعی، ارزن، ذرت و سورگوم در کشت مخلوط. تحقیقات کشاورزی. 1: 74-63.

2 . حاجبی ا و حیدری شریف آبادی ه (1386) تأثیر خشکی بر رشد و گره­زایی سه گونه شبدر. پژوهش و سازندگی در علوم کشاورزی و زراعت. 18(1): 21-13.

3 . ریحانی­نیا ش، خزایی ح ر، کافی م و نظامی ا (1392) تأثیر تنش خشکی خاک و سطوح مختلف نیتروژن بر برخی خصوصیات بیوشیمایی ارقام سورگوم دانه­ای در شرایط گلخانه. علوم و فنون کشت‌های گلخانه­ای. 14(4): 60-14.

4 . قربانلی م و نیاکان م (1386). مطالعۀ تأثیر تنش خشکی بر قند محلول، پروتئین، پرولین، ترکیبات فنول و فعالیت آنزیم ردوکتاز در گیاه سویا. علوم دانشگاه تربیت معلم. 5(1): 550-537.

5 . موانی پ (1391) مطالعۀ تأثیر خشکی بر آنزیم­های آنتی‌اکسیدان و پرولین سورگوم. اکوفیزولوژی گیاهان زراعی. 1: 30-24.

 

 

6 . Bajji M, Lutts S and Kinet JM (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. PlantScience. 160: 669-681.

7 . Bates IS, Waldern RP and Teare ID (1973) Rapid determination of free proline for water stress studies. PlantandSoil. 39: 205-207.

8 . Blackman SA, Obendorf, RL and Leopold AC (1995) Desiccation tolerance in developing soybean seeds: The role of stress proteins. PlantPhysiology. 93: 630-638.

9 . Blokhina O, Virolainen E and Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: Areview. Annales Botanici. 91: 179-194.

10 . Borgan JC (2006) Flame photometric determination of calcium in plants. Science Food Agriculture. 11: 446- 449.

11 . Dehqanzadeh H, Khajehpour MR, Heidari Sharif Abad H and Soleimani AS (2008) Effect of limited irrigation on the accumulation of proline, free soluble sugars and potassium in bread wheat cultivars. 10th Iran. Cong.AgronomyPlantBreedScience. 264-270.

12 . Esfandiari E, Mahboob SA. Shakiba MR and Alyari H (2009) The role of antioxidant pool size and proline in membrane protection under drought. Agronomy Sicence. 2: 139-147.

13 . Grattan SR and Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. ScienceHorticulturae. 78: 127-157.

14 . Gunes A, Inal A, Adak MS, Bagci EG, Cicek N and Eraslan F (2008) Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. RussianPlantPhysiology. 55: 59-67.

15 . Ho S, Chao Y, Tong W and Yu S (2001) Sugar coordinately and differentially regulates growth and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. PlantPhysiology. 46: 281-285.

16 . Hoque A and Arima S (2000) Evaluation of salt damage through cell membrane stability monitored by electrolyte leakage in water chestnut (Trapa sp.). Bull Faculty of Agriculture. Sagauni. 85: 141-146.

17 . Irigoyen JJ, Emerich DW and Sanchez- Diaz M (1992) Alfalfa leaf senescense induced by drought stress: photosnthesis, hydrogen peroxide metabolism, lipid peroxidation and athylene evoluation. Physiology Planetarium. 84: 67-72.

18 . Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R and Panneerselvam R (2007) Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation. ColloidsSurf. B: Biointerfaces. 60: 110-116.

19 . Janardhan KV and Krishnamorthy V (1975) A rapid method for determination of osmotic potencial of plant. Cell Curren Science. 44: 390-391.

20 . Jiang Y and Huang B (2001) Osmotic adjustment and root growth associated with drought pre-conditioning enhanced heat tolerance in Kentucky bluegrass. CropScience. 41: 1168-1173.

21 . Jones HG (2001) Drought tolerance and water use efficiency. In water deficits, A.C.H. Griffiths. 193-219.

22 . Karamanos AJ (1978) Water stress and leaf growth of field beans (Vicia faba L.) in the field: leaf number and total leaf area. Annales Botanici. 42: 1393-1402.

23 . Kummar SG, Matta Reddy A and Sudhakar C (2003) Nacl effects on proline metabolism in two high yielding genitypes of mulberry with contrasting salt tolerance. PlantScience. 165: 1245-1251.

24 . Mansour MMF, Salama KH, Ali FZM and Abou Hadid AF (2005) Cell and plant responses to NaCl in Zea Mays L. cultivars differing in salt tolerance. General and Applied PlantPhysiology. 31: 29-41.

25 . Marschner H (1995) Mineral Nutrition of Higher Plants. 2nd Academic Press. Ltd. London. 156-163.

26 . Martens D (2007) Management of drought stressed alfalfa, [Online]. Available at http://www.Co. Stearns. Mn. Usldocum ents/ E×T 07 242007 WC. Pdf.

27 . Meloni DA, Oliva MA, Ruiz HA and Martinez CA (2002) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Plant Nutrition. 24: 599-612.

28 . Mohsenzade S, Malboobi MA, Razavi K and Farrahi Aschtiani S (2006) Physiological and molecular responses of aeluropus lagopoides (poaceas) to water deficit. Environmental and Experimental Botany.56: 374-322.

29 . Paknejad F, Nasri M, Tohidi Moghadam HR, Zahedi H and Jami Alahmad M (2007) Effects of drought stress on chlorophyll fluoresence parameters chlorophyll content and grain yield of wheat cultivars. BiologicalScience. 7: 841-847.

30 . Pantuwan G, Fulkai S, Cooper M, Rajatasereekul S and Otoole JC (2002) Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowland: 3. Plant factors contributing to drought resistance. Field Crop Reserch. 73: 181-200.

31 . Rahnama H and Ebrahimzadeh H (2004) The effect of NaCl on proline accumulation in potato seedlings and calli. PhysiologyPlantarum. 26: 263-270.

32 . Safarnejad A (2004) Characterization of somaclones of alfalfa (Medicago sativa L.) for drought tolerance. Agriculture Science Technology. 6: 121-127.

33 . Sairam RK, Rao KV and Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science. 163: 1037-1046.

34 . Saneoka H, Moghaieb REA, Premachandra GS and Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis pabustris Huds. Environmental and Experimental Botany. 52: 131-138.

35 . Szabados L and Savoure A (2009) Proline: a multifunctional amino acid. Trends in Plant Science. 15: 89-97.

36 . Tarumingkeng RC and Coto Z (2003) Effects of drought stress on growth and yield of soybean. Kisman, Science Philosopy PPs 702, Term paper, Graduate School, Borgor Agricultural University (Institute Ppertanian Bogor).

37 . Thakur M and Sharma AD (2005) Salt stress and phytohormone (ABA) Inducedchanges in germination, sugars and anzymes of carbohydrate metabolism in Sorghum bicolor L. Moench seeds.Agriculter SocialScience. 1: 89-93.

38 . Weatherley PE (1995) Studies in water relation of cotton plants, the field measurement of water deficit in leaves. NewPhytology. 49: 81-87.

39 . Woodfield DR and Caradus JR (1997) Adaptation of white clover to moisture stress. Proceeding of the New Zealand Grassland Association. 48: 143-149.

40 . Yassen BY and Jurgees JA (1998) The response of sugar beet leaf growth and its ionic composition to sodium chloride. Agricultural. WaterResources. 7: 47-59.