نویسندگان

1 دانشجوی دکتری رشته خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس

2 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

چکیده

پاسخ گیاه کلزا به تنش شوری محیط رشد ریشه، به طور قابل توجهی به مرحله رشد گیاه وابسته است. این مطلب در اکثر پژوهش های مربوط به شوری مورد غفلت واقع گردیده و آزمایشات مربوط به شوری براساس فرض یکسان بودن آستانه تحمل گیاه طی کل دوره رشد، طراحی شده و تنها یک آستانه کاهش برای هر گیاه ارائه شده است. بررسی کمّی پاسخ گیاه کلزا (رقم Option500) به تنش شوری طی دو آزمایش کاملاً متفاوت انجام گرفت. در آزمایش نخست، گیاه از ابتدا تحت تنش شوری بود. حال آنکه در آزمایش دوم، گیاه تنها در مرحله آخر رشد خود تحت تنش قرار گرفت. بدین ترتیب آزمایش ها با یک تیمار غیرشور و هشت تیمار با شوری های سه، پنج، هفت، نه، 11، 13، 15 و 17 دسی زیمنس بر متر که از منبع آب شور طبیعی دریاچه حوض سلطان قم تأمین شده بود، در یک خاک شن لومی انجام گرفت. به منظور کمّی کردن اثر شوری در هر یک از دو آزمایش، مقادیر عملکرد نسبی دانه در شوری های مختلف، با استفاده از مدل های ماس و هافمن، ونگنوختن و هافمن، دیرکسن و همکاران و همایی و همکاران برآورد و پارامترهای مورد نظر به دست آمد، سپس مقایسه مدل ها با استفاده از پنج آماره کمّی انجام شد. برازش مدل های مختلف بر مقادیر اندازه گیری شده، طی دو آزمایش نشان داد که مدل همایی و همکاران از دقت بیشتری نسبت به سایر مدل ها برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling the effect of salinity application time of root zone on yield of canola

نویسندگان [English]

  • Vahid Reza Jalali 1
  • Mahdi Homaei 2

1

2

چکیده [English]

Canola response to root media salinity highly depends on its phenological stage. In most investigations, this fact is neglected. Therefore in most studies a single threshold value for each plant is introduced. The objective of this study was to investigate the quantitative response of canola to salinity. The study was done in two different experiments. In the first experiment, canola was exposed to salinity from the first growth stage. In second experiment, plants were irrigated with saline water only at final growth stage. Both experiments were conducted on a natural saline loamy sand soil, using salinity treatments including a non-saline water (tap water) and eight saline waters of levels (3, 5, 7, 11, 13, 15 and 17 dS.m-1). The Maas and Hoffman, van Genuchten and Hoffman, Dirksen et al., and Homaei et al., models were used to predict relative yield as a function of soil salinity. The obtained results based on the calculated maximum error (ME), root mean square error (RMSE), coefficient of determination (CD), modeling efficiency (EF) and coefficient of residual mass (CRM) statistics indicated the Homaee et al., model provides better prediction for both experiments.

کلیدواژه‌ها [English]

  • Canola
  • growth stages
  • modeling
  • Relative yield
  • Threshold salinity
1. جلالی و. ر.، همایی م. و میرنیا س. خ (1386) مدل­سازی واکنش کلزا به شوری طی مراحل مختلف رشد رویشی. تحقیقات مهندسی کشاورزی. 8 (4): 112-95.
2. جلالی و. ر.، همایی م. و میرنیا س. خ (1386) تأثیر سطوح مختلف شوری محیط رشد بر جوانه­زنی و رشد گیاهچه کلزا (Brassica napus L.). علوم خاک و آب. 21(2): 218-209.
 3. جلالی و. ر.، همایی م. و میرنیا س. خ (1387) مدل­سازی واکنش کلزا به شوری طی مراحل مختلف رشد زایشی. علوم کشاورزی و منابع طبیعی. 12 (44): 121-111.
4. همایی م (1381) واکنش گیاهان به شوری. کمیته ملی آبیاری و زهکشی ایران. نشریه شماره 58. تهران. ایران.
 
5. Dirksen C and Augustijn DC (1988) Root water uptake function for nonuniform pressure and osmotic potential. Agron. J. 15: 185 (Abst.).
6. Dirksen C, Kool JB, Koorevaar P and Van Genuchetn MTh (1993) HYSWASOR- Simulation model of hysteretic water and solute transport in the root zone. In: Russo D and Dagan G (Eds.), Water Flow and Solute Transport in Soils. Springer Verlage, New York. Pp. 99-122.
7. Feddes RA, Kowalik P and Zarandy H (1978) Simulation of Field Water Use and Crop Yield. Pudoc. Wageningen. The Netherlands Saline water in supplemental irrigation of wheat and barley under rainfed agriculture. Agr. Water Manage. 78: 122-127.
8. Francois LE (1994) Growth, seed yield, and oil content of canola grown under saline conditions. Agron. J. 86: 233-237.
9. Hamdy A, Sardo V and Farrag Ghanem KA (2005) heads. 14th International Conference on Computational Methods in Water Resources. Delft. The Netherlands.
10. Homaee M and Schmidhalter U (2008) Water integration by Plants root under non-uniorm soil salinity. Irrigation Sci. 27: 83-95.
11. Homaee M and Feddes RA (2002) Modeling the sink term under variable soil water osmotic and pressure heads. Develop. Water Sci. 47: 17-24.
12. Homaee M, Dirksen C and Feddes RA (2002a) Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions. Agr. Water Manage. 57: 89-109.
13. Homaee M, Feddes RA and Dirksen C (2002b) Simulation of root water uptake. II. Non-uniform transient water stress using different reduction functions. Agr. Water Manage. 57: 111-126.
14. Homaee M, Feddes RA and Dirksen C (2002c) Simulation of root water uptake. III. non-uniform transient combined salinity and water stress. Agr. Water Manage.  57: 127-144.
15. Homaee M, Feddes RA and Dirksen C (2002d) A macroscopic water extraction model for non-uniform transient salinity and water stress. Soil Sci. Soc. Am. J. 66: 1764-1772.
16. Maas EV and Hoffman GJ (1977) Crop salt tolerance - current assessment. J. Irrig. Drain. E- ASCE. 103: 115-134.
17. Richards LA (1931) Capillary conduction of liquids in porous mediums. Physics. 1: 318-333.
18. Van enuchten MTH and Hoffman GJ (1984) Analysis of crop salt tolerance data. In: Shainberg I and shalhevet J (Eds.), Soil salinity under irrigation process and management. Ecol. Stud. 51. Springer-Verlag, New York. Pp: 258-271.