نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، همدان، ایران.

4 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان. ایران

10.22059/jci.2025.399117.2945

چکیده

هدف: با توجه به مشکلات جهانی ناشی از تنش خشکی و محدودیت منابع آبی، این پژوهش با هدف بررسی اثرات سیلیکات‌پتاسیم بر عملکرد و صفات فیزیولوژیک ارقام جدید سیب‌زمینی تحت شرایط کم‌آبی انجام شد.
روش پژوهش: آزمایش به‌صورت کرت‌های دو بار خردشده در قالب بلوک‌های کامل تصادفی با سه تکرار اجرا گردید. عامل اصلی شامل سه فاصله آبیاری (هفت، ۱۰ و ۱۳ روز)، عامل فرعی سه سطح محلول‌پاشی سیلیکات‌پتاسیم \[شاهد، یک‌بار در ۵۰ روزگی و دوبار در ۴۰ و ۸۰ روزگی با غلظت ۲ لیتر در هزار لیتر آب] و عامل فرعی‌تر سه رقم سیب‌زمینی (کورسیکا، سانته و ووگ) بود. صفات موردارزیابی شامل عملکرد غده، کلروفیل کل، پروتئین محلول، کربوهیدرات کل، پرولین و مالون‌دی‌آلدهید بودند. 
یافته‌ها: نتایج نشان داد برهم‌کنش سه‌گانه تیمارها بر همه صفات معنی‌دار بود. بیش‌ترین عملکرد غده (۴۴/۶۱ تن در هکتار) در آبیاری هفت‌روزه، محلول‌پاشی دوبار و رقم کورسیکا حاصل شد، درحالی‌که کم‌ترین عملکرد (۳۹/۶۰ تن در هکتار) در آبیاری ۱۳ روزه، بدون محلول‌پاشی و رقم سانته ثبت گردید. بیشینه کلروفیل کل (26/2 میلی‌گرم بر گرم وزن تر) در شرایط بدون تنش، با محلول‌پاشی دوبار و رقم کورسیکا مشاهده شد. بیش‌ترین پرولین (۵۳/۶۹ میکرومول بر گرم وزن تر) در رقم سانته تحت تنش شدید (آبیاری ۱۳ روزه، بدون محلول‌پاشی) ثبت گردید. بالاترین پروتئین محلول (۱۴/۹۴ میلی‌گرم بر گرم وزن خشک) و کربوهیدرات کل (۲۱/۱۲ میلی‌گرم بر گرم وزن خشک) در آبیاری ۱۰ روزه، محلول‌پاشی دو بار و رقم کورسیکا به‌دست آمد. کم‌ترین مالون‌دی‌آلدهید (02/3 نانومول بر گرم وزن تر) در آبیاری هفت‌روزه با محلول‌پاشی دوبار ثبت شد، درحالی‌که بیش‌ترین آن (۲۵/۱۴ نانومول بر گرم وزن تر) در رقم سانته تحت تنش شدید و بدون محلول‌پاشی دیده شد.
نتیجه‌­گیری: رقم کورسیکا، محلول‌پاشی دو بار سیلیکات‌پتاسیم، به‌ویژه تحت آبیاری هفت‌روزه، موجب بهبود وضعیت فیزیولوژیک، افزایش کارایی مصرف آب و کاهش شاخص‌های تنش اکسیداتیو گردید. این امر نشان‌دهنده نقش مؤثر سیلیکات‌پتاسیم در بهینه‌سازی فرایندهای متابولیک و حفظ تعادل فیزیولوژیک گیاه در شرایط کم‌آبی است. تنش ملایم نیز با تحریک مکانیسم‌های دفاعی، ترکیبات حفاظتی مانند کربوهیدرات‌های محلول و پروتئین را در این رقم افزایش داد. در مقابل، رقم سانته تحت تنش شدید بدون محلول‌پاشی بیش‌ترین آسیب اکسیداتیو و کاهش عملکرد را نشان داد. بنابراین، استفاده از محلول‌پاشی دو بار سیلیکات‌پتاسیم همراه با انتخاب ارقام مقاوم مانند کورسیکا می‌تواند راه‌کاری مؤثر و پایدار برای حفظ عملکرد، بهبود کیفیت محصول و مدیریت منابع آبی در مناطق مستعد خشکی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Mitigating the effects of water deficit in potato by foliar application of potassium silicate: physiological and functional assessment of three new cultivars

نویسندگان [English]

  • Aliasghar Fozouni 1
  • Babak Andalibi 2
  • Mehrdad Chaichi 3
  • Sajjad Nasiri 4

1 Department of Production Engineering and Plant Genetics, Faculty of Agriculture, university of Zanjan, Zanjan, Iran.

2 Department of Production Engineering and Plant Genetics, Faculty of Agriculture, university of Zanjan, Zanjan, Iran.

3 Department of Seed and Plant Improvement Research, Hamedan Agricultural and Natural Resources, Research and Education Center, Agricultural Research, Education and Extension Organization, Hamedan, Iran.

4 Department of Production Engineering and Plant Genetics, Faculty of Agriculture, university of Zanjan, Zanjan, Iran

چکیده [English]

Objective: Drought and limited water resources threaten global potato production. This study evaluated the effects of foliar potassium silicate on agronomic performance and physiological traits of three potato cultivars under water-deficit
Methods: The experiment followed a split–split-plot design in a randomized complete-block arrangement with three replications. Irrigation interval (main plot) comprised 7, 10, and 13 days. Foliar treatments (sub-plot) included: (i) control (no spray), (ii) a single spray at 50 days after planting, and (iii) two sprays at 40 and 80 days after planting at 2 L K2SiO3 per 1000 L water. Cultivars (sub-sub plot) were Corsica, Sante, and Vog. Measured traits were tuber yield, total chlorophyll, soluble protein, total carbohydrate, proline, and malondialdehyde (MDA) content.
Results: The triple interaction among irrigation interval, foliar treatment, and cultivar significantly affected all traits. The highest tuber yield (44.61 t ha⁻¹) occurred with 7-day irrigation, two foliar sprays, and the Corsica cultivar; the lowest yield (39.60 t ha⁻¹) occurred with 13-day irrigation without foliar spray in Sante. Total chlorophyll was highest under non-stress conditions with two sprays in Corsica (2.26 mg g⁻¹ FW). Proline accumulation peaked in Sante under severe drought (13-day irrigation, no spray) (53.69 μmol g⁻¹ FW). Soluble protein (14.94 mg g⁻¹ DW) and total carbohydrate (21.12 mg g⁻¹ DW) were greatest under 10-day irrigation with two sprays in Corsica. MDA content was lowest with two sprays under 7-day irrigation (3.02 nmol g⁻¹ FW) and highest in Sante under severe drought without spray (25.14 nmol g⁻¹).
Conclusions: In Corsica, two foliar applications of potassium silicate under 7-day irrigation improved physiological performance and water-use efficiency while reducing oxidative stress indicators. Mild drought stress also enhanced accumulation of protective compounds (soluble carbohydrates and proteins) in Corsica. In contrast, Sante under severe drought without foliar application showed the greatest oxidative damage and yield reduction. Overall, combining two potassium silicate foliar applications with selecting drought-tolerant cultivars such as Corsica offers a promising, sustainable approach to maintaining yield, enhancing quality, and optimizing water use in drought-prone regions.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Drought stress
  • Osmolytes
  • Potato physiology
حسینی، سمانه؛ رفیعی‌الحسینی، محمد و روشن‌دل، پرتو (1397). تأثیر میدان مغناطیسی بر جوانه زنی دان سیاه (Guizotia abyssinica) تحت تنش خشکی. پژوهش‌های بذر ایران، 5(1)، 33-52.
Abdel-Zaher, A., Abd El-Rehim, G. H., Abd Elmotagly, M., & Yousef, A. F. (2023). The use of potassium silicate and fulvic acid to mitigate the effects of heat stress in tomato plants. Arabian Journal of Agricultural Sciences, 6(2), 122-140.
Abou-Sreea, A. I. B., Roby, M. H., Mahdy, H. A., Abdou, N. M., El-Tahan, A. M., El-Saadony, M. T., & El-Saadony, F. M. (2022). Improvement of selected morphological, physiological, and biochemical parameters of roselle (Hibiscus sabdariffa L.) grown under different salinity levels using potassium silicate and Aloe saponaria extract. Plants11(4), 497.
Aminifard, M., Zarchini, A., & Zafari, D. (2014). Effect of potassium silicate on biochemical and physiological characteristics of wheat under drought stress. Agricultural Water Management, 141(3), 45-53. 
Arafa, R. A., Youssef, S. M., Abou Hussein, S. D., & El-Keblawy, A. A. (2024). Role of potassium silicate in improving drought tolerance in potato (Solanum tuberosum L.): physiological and biochemical insights. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 74 (1), 1-13.
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
Azab, E. S., Alshallash, K. S., Alqahtani, M. M., Safhi, F. A., ALshamrani, S. M., Ali, M. A., & El-Taher, A. M. (2022). Physiological, anatomical, and agronomic responses of Cucurbita pepo to exogenously sprayed potassium silicate at different concentrations under varying water regimes. Agronomy12(9), 2155.
Bahadori, S., Giglou, M. T., Esmaielpour, B., Dehdar, B., Estaji, A., Hano, C., & Vita, F. (2023). Antioxidant compounds of potato breeding genotypes and commercial cultivars with yellow, light yellow, and white flesh in Iran. Plants12(8), 1707.
Bandurska, H. (2022). Drought stress responses: coping strategy and resistance. Plants11(7), 922.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39 (1), 205-207.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248-254.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28 (3), 350-356.  
El-Feky, F. M., Abd El-Mageed, T. A., & Shalaby, T. A. (2023). Response of eggplant (Solanum melongena L.) to potassium silicate application under water deficit. Plant Archives, 23 (1), 555-560.
El-Sharkawy, M., El-Sayed, A., & El-Metwally, M. (2023). Effect of potassium silicate foliar application and water stress by using different amounts of irrigation water supply on potato plants (Solanum tuberosum L.). Egyptian Journal of Chemistry, 66 (11), 317-326.
El-Yazied, A. A., Ibrahim, M. F., Ibrahim, M. A., Nasef, I. N., Al-Qahtani, S. M., Al-Harbi, N. A., & Shehata, S. A. (2022). Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, and ABA homeostasis and antioxidant enzymes. Plants11(9), 1151.
Fahad, H. N., Javed, T., & Baloch, A. A. (2021). Potassium-induced drought tolerance of potato by improving morpho-physiological and biochemical attributes. Agronomy, 11(12), 2573.
Gadallah, F. M., Soliman, H. I. A., & Abdalla, M. M. (2022). Physiological responses of two potato cultivars to potassium silicate under drought conditions. Journal of Plant Production, 13 (4), 269-277.
Hafez, E. M., Osman, H. S., El-Razek, U. A. A., Elbagory, M., Omara, A. E. D., Eid, M. A., & Gowayed, S. M. (2021). Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants10(5), 894.
Heath, R. L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125 (1), 189-198. 
Hosseini, S., Rafiei Alhosseini, M., & Roshandel, P. (2018). Effect of magnetic field on germination of Guizotia abyssinica under drought stress. Iranian Journal of Seed Research, 5 (1), 33-52. (In Persian).
Huang, C., Liao, J., Huang, W., & Qin, N. (2022). Salicylic acid protects sweet potato seedlings from drought stress by mediating abscisic acid-related gene expression and enhancing the antioxidant defense system. International Journal of Molecular Sciences23(23), 14819.
 Iqbal, M., Bashir, R., Hussain, I., & Mahmood, S. (2025). Enhancing maize (Zea mays L.) tolerance to water stress using kaolin and potassium silicate as protective agents. Cereal Research Communications, 53(1), 245-259.
Kandhol, N., Jain, M., & Tripathi, D. K. (2022). Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiologia Plantarum174(2), e13665.
Mahmoud, A. R., El-Khateeb, M. A., & Hamdia, M. A. (2021). Improving water use efficiency and drought tolerance in sweet pepper plants by foliar application of potassium silicate. Annals of Agricultural Sciences, 66 (2), 233-241.
Mohamed, A. A., Osman, M. M., & Saleh, M. E. (2023). Alleviation of drought stress impacts in tomato plants by potassium silicate: growth, biochemical and molecular analysis. Scientia Horticulturae, 318, 112082.
Nasir, M. W., & Toth, Z. (2022). Effect of drought stress on potato production: A review. Agronomy, 12(3), 635.
Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., & Yildiz, M. (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia2(4), 180-197.
Qin, L., Zheng, J., Fan, B., Zhou, Y., Diao, R., Sun, Y., & Wang, F. (2024). Analysis of volatile flavour compounds in different potato varieties and regions and the effect of soil elements on starch content. Food Chemistry24, 102019.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants10(2), 259.
Shehata, S. A. (2018). Effect of foliar application with potassium silicate and seaweed extract on plant growth, productivity, quality attributes and storability of potato. Journal of Plant Production, 9(3), 229-236.
Shokri Fomeshkenari, M., Ghasemi, K., & Emadi, S. M. (2022). Effect of Various Concentrations of Potassium Silicate on Biomass, Yield and Silicon Distribution in Tomato Plants. Journal of Vegetables Sciences6(12), 33-46.
 Singh, P., Kumar, V., & Sharma, A. (2023). Interaction of silicon with cell wall components in plants: A review. Journal of Applied & Natural Science, 15(2), 9-20.
Zaki, H. E., & Radwan, K. S. (2022). Response of potato (Solanum tuberosum L.) cultivars to drought stress under in vitro and field conditions. Chemical and Biological Technologies in Agriculture, 9, 1-19.