نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه علوم و مهندسی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران. ایران.

10.22059/jci.2025.376348.2882

چکیده

هدف: این پژوهش اثرات کاهنده فرمولاسیون‌های مختلف سلنیوم بر کاهوی فرانسوی تحت تنش شوری را با تمرکز بر پارامترهای رشد و جذب مواد معدنی بررسی کرد. هدف، تعیین شکل و غلظت بهینه سلنیوم برای کاهش مهار رشد، عدم تعادل یونی و استرس اکسیداتیو ناشی از شوری بود. هم‌چنین بررسی شد که آیا نانوسلنیوم در مقایسه با سلنات‌سدیم معمولی، با بهبود هموستاز مواد مغذی و بازیابی رشد، تحمل به شوری را بهتر افزایش می‌دهد. این مطالعه به‌دنبال ایجاد روابط کمی بین میزان مصرف سلنیوم و پاسخ‌های فیزیولوژیک در سطوح مختلف شوری و ارائه راه‌کارهای عملی برای کشاورزی در شرایط شور بود.
روش پژوهش: آزمایش در محیط کنترل‌شده با طرح فاکتوریل کاملاً تصادفی شامل سه سطح شوری (صفر، 3 و 6 دسی‌زیمنس بر متر NaCl) و پنج تیمار سلنیوم: شاهد (بدون سلنیوم)، سلنات‌سدیم (5 و 10 میلی‌گرم در لیتر) و نانوسلنیوم (2 و 4 میلی‌گرم در لیتر) در سه تکرار انجام شد. گیاهان کاهوی رشد‌یافته به‌روش هیدروپونیک در مرحله رویشی تحت تیمار قرار گرفتند و پارامترهای مورفولوژیکی، محتوای یونی (Na+، K+، Cl-) و تجمع سلنیوم اندازه‌گیری شد. از طیف‌سنجی جذب اتمی و کروماتوگرافی یونی برای اندازه‌گیری دقیق مواد معدنی و از آنووا دوطرفه و آزمون دانکن (05/0p≤) برای تحلیل داده‌ها استفاده شد.
یافته‌ها: برهم‌کنش معنی‌دار (01/0p<) شوری و سلنیوم در تمام پارامترها مشاهده شد. شوری شدید (6 دسی‌زیمنس بر متر) باعث کاهش ارتفاع گیاه (6/48 درصد)، وزن تر ساقه (8/44 درصد) و سطح برگ (2/54 درصد) شد و تجمع Na+ را 24/2 برابر و K+ را 7/42 درصد کاهش داد. نانوسلنیوم (4 میلی‌گرم در لیتر) وزن تر ساقه را 6/28 درصد و وزن خشک ریشه را 4/30 درصد افزایش داد و نسبت K+/Na+ را 2/31 درصد بهبود بخشید. نانوسلنیوم سطح برگ را 8/16 درصد بیش‌تر از سلنات افزایش داد. در شوری متوسط (3 دسی‌زیمنس بر متر)، نانوسلنیوم قطر ساقه را 3/22 درصد و گسترش تاج را 5/18 درصد افزایش داد، محتوای Cl- ریشه را 5/32 درصد کاهش و تجمع سلنیوم اندام هوایی را 7/25 درصد افزایش داد.
نتیجه‌گیری: کاهوی فرانسوی به شوری حساس است، اما مکمل سلنیوم، به‌ویژه نانوسلنیوم، این اثرات را از طریق حفظ پتاسیم، دفع سدیم، بهبود ظرفیت فتوسنتزی و تجمع سلنیوم کاهش داد. نانوسلنیوم (4 میلی‌گرم در لیتر) با عملکرد 31–16 درصد بهتر نسبت به سلنات، به‌عنوان تیمار بهینه شناخته شد و می‌تواند به‌عنوان یک ابزار نوآورانه در کشاورزی شور با فراهمی زیستی و اثرات محافظتی بهتر مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of using different sources of selenium on growth characteristics and absorption of nutrients in Lactuca sativa Lollo Bionda under salt stress

نویسندگان [English]

  • Parvin Sabzaliyan 1
  • Sepideh Kalateh jari 2
  • Marzieh Ghanbari Jahromi 3

1 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Assistant Professor, Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Professor Assistant, Department of Horticultural Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Objective: This study evaluated the mitigating effects of different selenium formulations on salt-stressed French lettuce (Lactuca sativa), focusing on growth parameters and mineral uptake dynamics. We aimed to identify the optimal selenium form and concentration for alleviating salinity-induced growth inhibition, ionic imbalance, and oxidative stress, and to determine dose–response relationships across salinity levels for practical guidance in saline agriculture.
Methods: In a controlled environment, a factorial completely randomized design was used with three salinity levels (0, 3, and 6 dS m−1 NaCl) and five selenium treatments: control (0), sodium selenate (5 and 10 mg L−1), and nano-selenium (2 and 4 mg L−1), with three replicates. Lettuce was grown hydroponically and subjected to salinity during the vegetative stage. Measured variables included morphological parameters (plant height, leaf area, fresh and dry biomass), ionic contents (Na+, K+, Cl−), and selenium accumulation. Mineral quantification employed atomic absorption spectroscopy and ion chromatography. Data were analyzed by two-way ANOVA with Duncan’s multiple range tests (p ≤ 0.05) to assess main effects and interactions.
Results: Salinity and selenium treatments interacted significantly (p < 0.01) for all measured traits. Under severe salinity (6 dS m−1), growth was markedly inhibited (e.g., plant height −48.6%, shoot fresh weight −44.8%, leaf area −54.2%), with a 2.24-fold increase in Na+ and a 42.7% decrease in K+ in shoots. Nano-selenium at 4 mg L−1 substantially mitigated stress, increasing shoot fresh weight by 28.6% and root dry weight by 30.4%, and improving the K+/Na+ ratio by 31.2% via selective ion regulation. At equivalent selenium doses, nano-selenium enhanced leaf area by 16.8% more than selenate. Under moderate salinity (3 dS m−1), nano-selenium promoted architecture (stem diameter +22.3%, canopy spread +18.5%), reduced root Cl− content by 32.5%, and increased shoot selenium accumulation by 25.7% versus untreated stressed plants.
Conclusion: Lettuce displays pronounced sensitivity to salinity, with substantial biomass loss and ionic toxicity under high salt. Selenium supplementation mitigates these effects, with nano-formulations providing superior protection than conventional sodium selenate. The 4 mg L−1 nano-selenium treatment yielded the greatest overall benefits, improving growth and nutrient homeostasis across salinity levels. These findings support the potential of selenium nanofertilizers as an agronomic strategy to enhance salt tolerance in lettuce, with possible applicability to other salt-sensitive horticultural crops.

کلیدواژه‌ها [English]

  • Absorption of Elements
  • Foliar Application
  • Lettuce
  • Osmotic Stress
  • Sodium Selenate
بیارش، مینا و رقامی، محمود (1400). اثر تنش شوری بر صفات رشدی و فتوسنتزی دو رقم هیبرید و ایرانی اسفناج. پژوهش‏های تولید گیاهی (علوم کشاورزی و منابع طبیعی28(2)، 131-146.
جلالی، محبوبه؛ عبداللهی‏مقدم، حسن و سهرابی، فاطمه (1401). تأثیر غلظت و نوع کاربرد سلنیوم بر کمیت و کیفیت اسانس به‌لیمو (Lippia citriodora L.). مجله پژوهش‏های گیاهی (مجله زیست‌شناسی ایران) (علمی)، 35(3)، 461-476.
کافی، محمد؛ لاهوتی، مهرداد؛ زند، اسکندر؛ شریفی، حمیدرضا و گلدانی، مرتضی (1378). فیزیولوژی گیاهی. انتشارات جهاد دانشگاهی مشهد.
کلته، منیژه؛ علیپور، زرین‏تاج و اشرف، شهرام (1393). اثر نانو ذرات سیلیس بر رشد و میزان جذب فسفر و پتاسیم گیاه ریحان سبز (Ocimum basilicum) تحت تنش شوری. کنفرانس علوم و فناوری نانو، گرگان، 1 آبان 1393.
وجودی مهربانی، لمیا؛ انوری‏قشلاق، یعقوب و مطلبی‏آذر، علیرضا (1401). تأثیر سلنیوم و نانوذره آهن بر رشد و عملکرد شمعدانی عطری تحت تنش شوری کلریدسدیم. علوم باغبانی، 36(1)، 213-228.
Abdalla, M.A., Li, F.., Wenzel-Storjohann, A., Sulieman, S., Tasdemir, D., & Mühling, K.H. (2021). Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics13, 713. 
Ahmad, Z., Anjum, S., Skalicky, M., Waraich, E.A., Muhammad Sabir Tariq, R., Ayub, M.A., Hossain, A., Hassan, M.M., Brestic, M., Sohidul Islam, M., & Habib-Ur-Rahman, M. (2021). Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules, 26(6), 1699.
Alam, M.Z., McGee, R., Hoque, M.A., Ahammed, G.J., & Carpenter-Boggs, L. (2019). Effect of Arbuscular Mycorrhizal Fungi, Selenium and Biochar on Photosynthetic Pigments and Antioxidant Enzyme Activity under Arsenic Stress in Mung Bean (Vigna radiata). Frontiers in Physiology, 10, 365-379.
Al-Houti, F. (2017). Evaluation of the effectiveness of supplemental lights vs no supplemental lights on hydroponically grown lettuce. In partial fulfillment of the requirements. For the Degree of Master of Science. Colorado State University. Fort Collins, Colorado.
Alvan, H.A., Jabbarzadeh, Z., Fard, J.R., & Noruzi, P. (2025). Selenium foliar application alleviates salinity stress in sweet william (Dianthus barbatus L.) by enhancing growth and reducing oxidative damage. Scientific Reports15, 5570.
Amirabad, S.A., Behtash, F., & Vafaee, Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environmental Science and Pollution Research, 27, 12476-12490.
Ashraf, M.A., Akbar, A., Parveen, A., Rasheed, R., Hussain, I., & Iqbal, M. (2018). Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry123, 268-280.
Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., & Hamidpour, M. (2016). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum, 38, 21.
Azarmi-Atajan, F., & Sayyari-Zohan, M.H. (2020). Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria. Journal of Horticulture and Postharvest Research3(Special Issue-Abiotic and Biotic Stresses), 67-78.
Babajani, A., Iranbakhsh, A., Ardebili, Z.O., & Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, 26(24), 24430-24444.
Bayarash, M., & Raghami, M. (2021). The effect of salinity stress on growth and photosynthetic parameters of hybrid and Iranian spinach cultivars. Journal of Plant Production, 28(2), 131-146. (In Persian).
Breś, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., & Mieloch, M. (2022). The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy12, 244.
Broadley, M.R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S.J., Hart, D.J., Hurst, R., Knott, P., & Mcgrath, S.P., et al., (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant Soil, 332, 5-18.
Don, S., Qiang, H., Zhaonan, D., & Zhengquan, H. (2014). Genetic transformation of lettuce: a review. African Journal of Biotechnology, 13, 1686-1696.
Elkelish, A.A., Soliman, M.H., Alhaithloul, H.A., & El-Esawi, M.A. (2019). Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology and Biochemistry, 137, 144-153.
Farag, H.A.S., Ibrahim, M.F.M., El-Yazied, A.A., El-Beltagi, H.S., El-Gawad, H.G.A., Alqurashi, M., Shalaby, T.A., Mansour, A.T., Alkhateeb, A.A., & Farag, R. (2022). Applied selenium as a powerful antioxidant to mitigate the harmful effects of salinity stress in Snap Bean seedlings. Agronomy12(12), 3215.
Ghasemian, S., Masoudian, N., Saeid Nematpour, F., & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76(12).
Ghassemi-Golezani, K., Hassanzadeh, N., Shakiba, M.R., & Esmaeilpour, B. (2020). Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology, 26, 101636.
Gupta, M., & Gupta, S. (2017). An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Frontiers in Plant Science, 7, 2074.
Hawrylak-Nowak, B. (2008). Effect of selenium on selected macronutrients in maize plants. Journal of Elementology, 13(4), 513-519.
Hu, K., Zhang, L., Wang, J., & You, Y. (2013). Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Societatis Botanicorum Poloniae, 82(3), 193-197.
Imtiaz, M., Rizwan, M.S., Mushtaq, M.A., Ashraf, M., Shahzad, S.M., Yousaf, B.,  & Tu, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of Environmental Management, 183, 521-529.
Inbar, J., Abramsky, M., Cohen, D., & Chet, I. (1994). Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 100(5), 337-346.
Jalali, M., Abdollahi Moghaddam, H., & Sohrabi, F. (2022). Effect of concentration and type of selenium application on the quantity and quality of essential oil of Lemon verbena (Lippia citriodora L.). Journal of Plant Research (Iranian Journal of Biology)35(3), 461-476. (In Persian).
Kafi, M., Lahoti, M., Zand, E., Sharifi, H.R., & Guldani, M. (1999). Plant Physiology. Publications University of Mashhad. (In Persian).
Kalte, M., Alipour, Z.T. & Ashraf, Sh. (2014). The effect of silica nanoparticles on the growth and absorption of phosphorus and potassium of green basil plant (Ocimum basilicum) under salt stress. Nano Science and Technology Conference, Gorgan. (In Persian).
Kumari, S., Phogat, D., Sehrawat, K.D., Choudhary, R., Rajput, V.D., Ahlawat, J., Karunakaran, R., Minkina, T., & Sehrawat, A.R. (2021). The Effect of Ascophyllum nodosum Extract on the Nutraceutical Antioxidant Potential of Vigna radiata Sprout under Salt Stress. Plants, 10, 1216.
Mahaveer, B.M., & Jaldappa, S. (2000). Spectrophotometric Determination of Selenium (IV) Using Methdilazine Hydrochloride. Turkish Journal of Chemistry, 24, 287-290.
Malorgio, F., Diaz, K., Ferrante, A., Mensuali, A., & Pezzarossa, B. (2009). Effects of selenium addition on minimally processed leafy vegetables grown in floating system. Journal of Agricultural Food & Chemistry, 89(13), 2243-2251.
Moghaddam, M., Farhadi, N., Panjtandoust, M., & Ghanati, F. (2020). Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(6), 835-842.
Motsara, M., & Roy, R.N. (2008). Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations, 134-160.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663.
Nasiri, M. H., Rezayian, M., Niknam, V., & Okhovat, A. (2022). Antioxidative and structural responses of Melissa officinalis to salt stress. Russian Journal of Plant Physiology, 69(7), 152.
Ozbolt, L., Kreft, S., Kreft, I., Germ, M., & Stibilj, V. (2008). Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chemistry, 110, 691-696.
Petridis, A., Gasparatos, D., Haidouti, C., Paschalidis, C., & Zamanidis, P. (2013). Effects of nitrogen and boron fertilization on lettuce mineral nutrition in a calcareous soil. Communications in Soil Science and Plant Analysis, 44, 733-740.
Rady, M.M., Belal, H.E., Gadallah, F.M., & Semida, W.M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290.
Razmavar, Z., Naderi, R., Abdossi, V., Ladanmoghadam, A., & Nematollahi, F. (2021). The Response of Plant Growth and Physio-biochemical Properties Inedible Flowers of Pelargonium peltatum L. to Soil Applied Potassium and Selenium. Journal of Medicinal Plants and By-Product10(2), 217-225.
Ren, H., Li, X., Guo, L., Wang, L., Hao, X., & Zeng, J. (2022). Integrative Transcriptome and Proteome Analysis Reveals the Absorption and Metabolism of Selenium in Tea Plants [Camellia sinensis (L.) O. Kuntze]. Frontiers in Plant Science, 13, 848349.
Schiavon, M., Lima, L.W., Jiang, Y., & Hawkesford, M.J. (2017). Effects of Selenium on Plant Metabolism and Implications for Crops and Consumers. In Selenium in Plants. Plant Ecophysiology, 11, 256-275.
Shalaby, T., Bayoumi, Y., Alshaal, T., Elhawat, N., Sztrik, A., & El-Ramady, H. (2017). Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil, 421, 245-258.
Shalaby, T.A., Abd-Alkarim, E., El-Aidy, F., Hamed, E.S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., & Dos Reis, A.R. (2021). Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212, 111962.
Soleymanzadeh, R., Iranbakhsh, A., Habibi, G., & Oraghi Ardebili, Z. (2020). Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biologica Cracoviensia Series Botanica, 62, 33-42.
Taha, R.S., Seleiman, M.F., Shami, A., Alhammad, B.A., & Mahdi, A.H. (2021). Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Plants, 10(6), 1040.
Taiz, L., & Zeiger, E. (2006). Plant physiology. 4th Edition, Sinauer Associates, Inc., Sunderland.
Turakainen, M. (2007). Selenium and Its Effects on Growth, Yield and Tuber Quality in Potato. Ph.D. Dissertation, Department of Applied Biology, University of Helsinki, Helsinki.
Vojodi Mehrabani, L., Anvari Gheshlagh, Y., & Motallebi Azar, A. (2022). Foliar Application of Nano Fe and Se Affected the Growth and Yield of Pelargonium graveolens under Salinity Stress. Journal of Horticultural Science36(1), 213-228. (In Persian).
Xie, M., Sun, X., Li, P., Shen, X., & Fang, Y. (2021). Selenium in cereals: Insight into species of the element from total amount. Comprehensive Reviews in Food Science and Food Safety, 20, 2914-2940.
Yasir, T.A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M.I.A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M.M., Hassan, F.A., & Iqbal, M.A. (2021). Exogenous Sodium Nitroprusside Mitigates Salt Stress in Lentil (Lens culinaris Medik.) by Affecting the Growth, Yield, and Biochemical Properties. Molecules, 26, 2576.
Yin, H., Qi, Z., Li, M., Ahammed, G.J., Chu, X., & Zhou, J. (2019). Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L.. Ecotoxicology and Environmental Safety, 169, 911-917.
Zahedi, S.M., Abdelrahman, M., Hosseini, M.S., Hoveizeh, N.F., & Tran, L.S.P. (2019a). Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253, 246-258.
Zahedi, S.M., Hosseini, M.S., Meybodi, N.D.H., & Teixeira da Silva, J.A. (2019b). Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. South African Journal of Botany, 124, 350-358.