نوع مقاله : مقاله پژوهشی

نویسنده

گروه زراعت، واحد ملکان، دانشگاه آزاد اسلامی، ملکان، ایران

10.22059/jci.2025.387508.2912

چکیده

هدف: با توجه به اهمیت کاهش مصرف نهاده‌های شیمیایی، مطالعه حاضر به بررسی اثرات محلول‌پاشی باکتری‌ها و ویتامین‌ها بر ویژگی‌های رشدی و عملکرد کینوا پرداخته است.
روش پژوهش: تیمارها شامل سویه های مختلف باکتری‌ها (عدم کاربرد باکتری‌ها، کاربرد Pseudomonas fluorescens ، کاربرد Bacillus subtilis و کاربرد هر دو سویه باکتریایی) و غلظت‌های ویتامین‌های گروه ب (2، 4 و 6 گرم در لیتر) بود. محلول‌های باکتریایی و ویتامینه به‌صورت محلول‌پاشی بر روی برگ‌های گیاه در دو نوبت در فواصل زمانی دو هفته یک‌بار در طول فصل رشد (استقرار بوته‌ها و دو هفته بعد) انجام شد محلول‌پاشی در ساعات خنک عصر انجام شد. این آزمایش در دو سال 1402-1404 به‌صورت اسپلیت پلات با طرح بلوک کامل تصادفی (RCBD) با سه تکرار و به‌صورت مزرعه‌ای انجام شد. صفات موردمطالعه شامل ارتفاع بوته، شاخص سطح برگ، شاخص کلروفیل، عملکرد دانه در بوته، سیتوکینین، اکسین، جیبرلین، پروتئین دانه، محتوای کربوهیدرات‌های محلول برگ و  کل محتوای آنتی‌اکسیدانی بود.
یافته‌ها: نتایج تجزیه واریانس نشان داد که ارتفاع بوته‌ها، شاخص سطح برگ، محتوای هورمون‌های گیاهی (اکسین، سیتوکینین و جبیرلین)، محتوای کلروفیل، و عملکرد دانه تحت تأثیر اثرات معنی‌دار محلول‌پاشی باکتری‌ها و ویتامین‌ها قرار گرفت. بیش‌ترین افزایش در ارتفاع بوته‌ها (110 سانتی‌متر) مربوط به تیمار B.subtilis بود که 2/12 درصد بیش‌تر از شاهد افزایش نشان داد. هم‌چنین، محلول‌پاشی با ویتامین‌ها به‌ویژه در غلظت 150 میلی‌گرم در لیتر موجب افزایش 8/6درصد در ارتفاع بوته‌ها و بهبود شاخص سطح برگ گردید. تیمارهای مختلف باعث افزایش معنی‌دار غلظت هورمون‌های گیاهی اکسین و سیتوکینین در برگ‌ها شدند. بیش‌ترین غلظت اکسین در تیمار B. subtilis همراه با 150 میلی‌گرم در لیتر ویتامین مشاهده شد که 81 درصد افزایش داشت. هم‌چنین، ترکیبی از تیمارهای باکتریایی و ویتامین‌ها افزایش بیش‌تری نسبت به کاربرد جداگانه هر یک از آن‌ها داشت. در نهایت، عملکرد دانه کینوا به‌طور قابل‌توجهی تحت تأثیر ترکیب تیمارهای B.subtilis و 150 میلی‌گرم در لیتر ویتامین قرار گرفت و افزایش 15/22درصد نسبت به شاهد نشان داد. به‌علاوه، محلول‌پاشی با باکتری‌ها و ویتامین‌ها باعث افزایش محتوای پروتئین دانه‌ها نیز شد، به‌طوری که بیش‌ترین میزان پروتئین دانه متعلق به تیمار B. subtilis در سال اول بود.
نتیجه‌گیری: نتایج این مطالعه نشان می‌دهد که ترکیب محلول‌پاشی باکتری‌ها و ویتامین‌ها می‌تواند به‌طور مؤثری ویژگی‌های رشدی و کیفیت محصول کینوا را بهبود بخشد که ممکن است ناشی از تأثیرات هم‌افزای این دو عامل بر تولید هورمون‌های گیاهی و فرآیندهای فتوسنتزی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of foliar application of bacteria and vitamins on growth and yield of Quinoa (Chenopodium quinoa)

نویسنده [English]

  • elnaz farajzadeh

DEPARTMENT of agronomyDepartment of Agronomy, Malekan Branch, Islamic Azad University, Malekan, Iran.

چکیده [English]

Objective: The objective of the present study was to evaluate whether foliar application of plant-growth-promoting bacteria and vitamins can enhance growth, physiology, and yield of quinoa while reducing chemical inputs.
Methods: A field experiment (2023–2024) was conducted in a split-plot arrangement within a randomized complete-block design with three replications. Factor A (bacteria strains) included: no bacteria, Pseudomonas fluorescens, Bacillus subtilis, and a combination of both strains. Factor B (vitamin concentrations) included 2, 4, and 6 g/L. Foliar sprays were applied twice during the growing season at two-week intervals, during the cooler evening hours (establishment and two weeks later). Measured traits included plant height, leaf area index (LAI), chlorophyll index, seed yield per plant, levels of cytokinin, auxin, gibberellin, seed protein, leaf soluble carbohydrate content, and total antioxidant capacity.
Results: ANOVA revealed significant effects of foliar bacteria and vitamin treatments on several traits, including plant height, LAI, phytohormone contents (auxin, cytokinin, gibberellin), chlorophyll index, and grain yield. The tallest plants reached about 110 cm with Bacillus subtilis, representing a 12.2% increase over the control. Vitamin applications, particularly at 150 mg/L, increased plant height by approximately 6.8% and improved LAI. Foliar treatments also elevated leaf auxin and cytokinin concentrations, with the highest auxin observed under Bacillus subtilis plus 150 mg/L vitamins (≈81% increase). Combined bacterial and vitamin treatments generally outperformed single applications for chlorophyll synthesis and grain yield. Grain yield increased by about 23.15% with the Bacillus subtilis+ 150 mg/L vitamin treatment. Grain protein content was highest with Bacillus subtilis in year one.
Conclusion: Foliar application of growth-promoting bacteria (B. subtilis and P. fluorescens) in combination with vitamins beneficially affected quinoa growth, physiology, and yield, with the combination often outperforming individual treatments. The Bacillus subtilis and 150 mg/L vitamin regime most consistently enhanced plant height, LAI, hormone balance, chlorophyll content, grain yield, and grain protein. These results suggest that integrating bacterial and vitamin foliar sprays can reduce reliance on chemical inputs while improving quinoa productivity under field conditions. 

کلیدواژه‌ها [English]

  • Bacillus subtilis
  • Grain
  • New crops
  • Physiology
  • Pseudomonas fluorescens
Alipoor, M., & Mohsenzadeh, S. (2012). Effect of Vitamin B Complex on some Biochemical Parameters of Aloe vera L. under Nickel and Cadmium Stress. Journal of Medicinal Plants and By-Products, 2, 107-115.
Belay, A. (2020). Plant growth enhancement using rhizospheric halotolerant phosphate-solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa Willd. Microorganisms, 8(6), 948
Boubakri, H., Gargouri, M., Mliki, A., Faiçal Brini, Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244, 56-63.
Brito, T. S., Schons, D. C., Ritter, G., Netto, L. A., Eberling, T., Pan, R., & Guimarães, V. F. (2018). Growth promotion by Azospirillum brasilense in the germination of rice, oat, brachiaria and quinoa. Journal of Experimental Agriculture International, 22(1), 1-9.
Devarajan, H., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., & Kizhaeral, S. (2021). The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L.), Plants, 10, 67-73.
Dorjey, S., Dolkar, K., & Sharma, R. (2017). Plant growth promoting Rhizobacteria Pseudomonas: A Review. International Journal of Current Microbiology and Applied Sciences, 6(7), 1335-1344.
Dursun, A., Ekinci, M., & Figen Dönmez, M. (2010). Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pakistan Journal of Botany, 42(5), 3349-3356.
Efthimiadou, M., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Efect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Agriculture, 10, 45-53.
Salama, A. M., Seleem, E., Abd El Salam, R., & Ghoniem, A. (2021). Response of quinoa plant grown under drought stress to foliar application with salicylic acid, paclobutrazol and algae extract. Scientific Journal of Agricultural Sciences, 3(2), 87-104.
Emam, M. M., El-Sweify, A. H., & Helal, N. M. (2011). Efficiencies of some vitamins in improving yield and quality of flax plant. African Journal of Agricultural Research, 6(18), 4362-4369.
Eshaghi, E., Mousae, S., Hendiyani, A., Habibi Khave, A., & Nosrati, A. (2024). Evaluation of the potential of multi-trait PGPR isolates as inoculants for maize (Zea mays L.) growth. Iranian Journal of Microbiology, 16, 812-826.
Fitzpatrick, T., & Chapman, M. (2020). The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. Journal of Biological Chemistry, 295, 12002-12013.
Freitas, G., Moreira, A., & Falaci Prudencio, M. (2023). Foliar spray inoculation with plant growth promoting bacteria associated with nitrogen doses in Megathyrsus maximus cv. BRS Zuri. Agronomy, 13, 64-76.
Garcia, A., Pradi Vendruscolo, E., Ferreira de Lima, A., de Castro Seron, C., Battistuzzi Martins, M., & Rodrigues Sant’ Ana, G. (2023). Effect of B vitamins on lettuce plants subjected to saline stress. Agronomía Colombiana, 41(1), 1-6.
García-Parra, M.A., Roa-Acosta, D.F., Stechauner-Rohringer, R., GarcíaMolano, F., Bazile, D., & Plazas-Leguiza, N. (2020). Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): A review on a global scale. Sylwan, 11, 34-43.
Hussain, M., Ashraf, M., Usman, M., Yousaf, M., & others. (2022). Application of natural and synthetic growth promoters improves the productivity and quality of quinoa crop through enhanced photosynthetic and antioxidant activities. Crop Protection, 157, 105234.
Khorrami, N., Jamei, R., Darvishzadeh, R., & Hosseini Sarghin, S. (2020). Effect of salinity stress on hormones of auxin, gibberellin, physiological, morphological and anatomical characteristics of Hibiscus escolentus L. Iranian Journal of Plant Biology, 11, 153-167.
Kordatzaki, G., Katsenios, N., Giannoglou, B., Varvara Andreou, Chanioti, S., George Katsaros, Savvas, D., & Efthimiadou, A. (2022). Effect of foliar and soil application of plant growth promoting bacteria on kale production and quality characteristics. Scientia Horticulturae, 301, 73-79.
Kshipra, G., & Pandurang, P. (2021). Plant Growth Promoting Rhizobacteria (PGPR): A Review. International Journal of Current Microbiology and Applied Sciences, 10(04), 882-886.
Kumar Jha, M., & Saraf, M. (2015). Plant growth promoting Rhizobacteria (PGPR): a review. Journal of Agricultural Research and Developmen, 5(2), 0108-0119.
Kumar, S. (2023). Nano-zinc and plant growth-promoting bacteria is a sustainable alternative for improving productivity and agronomic biofortification of common bean. Chemical and Biological Technologies in Agriculture, 10(1), 77.
Li, J., Guo, X., Cai, D., Xu, Y., & Wang, Y. (2023). Bacillus amyloliquefaciens 11B91 inoculation enhances the growth of quinoa (Chenopodium quinoa Willd.) under salt stress. PeerJournal, 11, e15925.
Liu, L., Salifu Yahaya, B., Jing, Li., & Wu, F. (2024). Enigmatic role of auxin response factors in plant growth and stress rolerance. Frontiers in Plant Science, 5, 87-94.
Minh, N., Hoang, D., Van Loc, N., & Viet Long, N. (2020). Effects of plant density on growth, yield and seed quality of quinoa genotypes under rain-fed conditions on red basalt soil regions. Australian Journal of Crop Science, 14(12),1977-1982.
Mostafa, M. (2020). Effect of foliar application of some vitamins and irrigation intervals on vegetative growth, flowering, and some biochemical constituents of Helianthus annuus L. plants. Scientific Journal of Agricultural Sciences, 2 (2), 1-8.
Mostafa, N. (2020). Effect of foliar application of some vitamins and irrigation intervals on vegetative growth, flowering, and some biochemical constituents of Helianthus annuus L. plants.  Scientific Journal of Agricultural Sciences, 2 (2), 1-8.
Nasreen, A., Ghosh, R. K., Ali, M., Rahman, T., & Akhter, S. (2022). Estimation of thiamine, riboflavin and niacin content in jute leaves. GSC Advanced Research and Reviews, 13(1), 116-124.
Orhana, E., Esitkena, A., Ercislia, S., Turanb, M., & Sahin, F. (2006). Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae, 111, 38-43.
Pathan, S., Ndunguru, G., Clark, K., & Ayele, G. (2023). Yield and nutritional responses of quinoa (Chenopodium quinoa Willd.) genotypes to irrigated, rainfed, and drought-stress environments. Sec. Crop Biology and Sustainability, 7, 47-56.
Pourcel, L., Moulin, M., & Fitzpatrick, T. B. (2013). Examining strategies to facilitate vitamin B1 biofertification of plants by genetic engineering. Frontiers in Plant Science, 4, 47-56.
Sarkar, B., Kumar, C., Pasari, S., Goswami, B., & Koshariya, A. K. (2022). Review on pseudomonas fluorescens: a plant growth promoting rhizobacteria. Journal of Positive School Psychology, 8, 91-103.
Sofy, M. R., Sharaf, A. E. M., & Fouda, H. M. (2016). Effect of foliar application of proline and zinc on growth, yield and some metabolic activities of Chenopodium quinoa plants. International Journal of Advanced Research, 4(1), 1701-1717.
Testen, A. L., & Backman, P. A. (2013). Plant growth-promoting characteristics of Bacillus species associated with Chenopodium quinoa. Virginia Tech Repository.
Toghyani, M., Ehsanpour, A., Shariati, M., & Emamzadeh, R. (2016). The studuy of Auxin and Cytokinin changes and somaclonal variation in regenerated plant and callus of tobacco (Nicotiana rustica L.). Plant Research, 29, 385-394.
VeenaKumari, D., Vickram, A. S., & Sridharan, T. B. (2020). Plant Growth Promoting Rhizobacteria (PGPR) Pseudomonas stutzeri from forest soil: A Review. European Journal of Molecular & Clinical Medicine, 7, 67-73.
Wu, X., Tang, Y., Li, C., Wu, C., & Huang, G. (2015). Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 18, 284-294.
Younis, A.S.M., Sadak, S., Bakry, B., & Ramadan, A. (2020). Foliar application influence of pyridoxine and thiamine on growth, qualitative and quantitative traits of faba bean grown in sandy soil. American-Eurasian Journal of Agronomy, 13 (2), 30-38.
Younis, A.S.M., Sadak, S.H., Bakry, B.A., & Ramadan, A. (2020). Foliar application influence of pyridoxine and thiamine on growth, qualitative and quantitative traits of faba bean grown in sandy soil. American-Eurasian Journal of Agronomy, 13 (2), 30-38.
Zeboon, N., & Baqir, H. (2023).  The Effect of Vitamin B9 and E on the Yield and Its Components of the Wheat Crop. Fifth International Conference for Agricultural and Environment Sciences, 1158.
Zulkadir, G. (2021). The effects of various row spacing and sowing periods on the plant properties of quinoa (Chenopodium quinoa Willd.). Applied Ecology and Environmental Research, 19(3), 1857-1867.