نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زراعی و اصلاح نباتات دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران.

2 گروه علوم زراعی و اصلاح نباتات دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، پاکدشت، تهران. ایران

3 گروه علوم زراعی و اصلاح نباتات دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، پاکدشت، تهران، ایران

4 گروه علوم زراعی و اصلاح نباتات دانشکده فناوری کشاورزی ابوریحان، دانشگاه تهران، پاکدشت. تهران، ایران

10.22059/jci.2025.395735.2934

چکیده

هدف: به‌منظور تعیین کیفیت علوفه در گیاه فستوکا پرتنسیس در شرایط تنش کم‌آبی، این آزمایش در سال‌های ۱۴۰۱ تا ۱۴۰۳ در مزرعه تحقیقاتی دانشکده فناوری کشاورزی دانشگاه تهران اجرا شد.
روش پژوهش: بذر ۲۰ ژنوتیپ گونه فستوکا پرتنسیس از بانک ژن NordGen کشور سوئد و مؤسسه ART کشور سوئیس تهیه شد و در قالب طرح بلوک کامل تصادفی با آرایش کرت‌های خُردشده در زمان، در سه تکرار، تحت دو شرایط آبیاری نرمال (۱۰۰ درصد ظرفیت مزرعه) و تنش آبی (۵۰ درصد ظرفیت مزرعه) پس از استقرار گیاه کشت گردید. نمونه‌برداری در اواسط دوره گلدهی، پس از اعمال تنش به‌مدت دو سال، در اردیبهشت‌ماه ۱۴۰۲ و ۱۴۰۳ انجام شد. در این مرحله، صفات مرتبط با کیفیت علوفه نظیر فیبر شوینده اسیدی (ADF)، فیبر شوینده خنثی (NDF)، سلولز، لیگنین، ازت، خاکستر، ماده خشک مصرفی (DMI)، قابلیت هضم ماده خشک (IVDMD)، انرژی متابولیسمی (ME) و ارزش نسبی تغذیه‌ای (RFV) موردارزیابی قرار گرفتند.
یافته‌ها: نتایج تجزیه واریانس نشان داد اثر ساده تنش خشکی برای تمام صفات و هم‌چنین اثرات ساده ژنوتیپ، برداشت، اثرات متقابل دوگانه تنش× ژنوتیپ، ژنوتیپ× برداشت و اثر متقابل سه‌گانه تنش× ژنوتیپ× برداشت برای تمام صفات به‌جز سلولز، و نیز اثر متقابل تنش× برداشت برای تمام صفات به‌جز خاکستر، در سطح احتمال یک درصد معنی‌دار بودند. براساس مقایسه میانگین‌ها، ژنوتیپ‌های ۲، ۱۳، ۱۴، ۱۵، ۱۶ و ۱۷ به‌عنوان ژنوتیپ‌های برتر از نظر کیفیت علوفه در شرایط تنش خشکی شناسایی شدند، به‌طوری‌که دارای میزان پروتئین بالاتر و مقادیر فیبر شوینده اسیدی و خنثی پایین‌تری بودند.
نتیجه‌گیری: این مطالعه نشان داد که ارزیابی کیفیت علوفه در شرایط تنش خشکی می‌تواند ابزار مؤثری برای شناسایی ژنوتیپ‌های متحمل و دارای ارزش غذایی بالا باشد. شناسایی ژنوتیپ‌هایی با پروتئین بالا و فیبر کم‌تر در شرایط محدودیت آبی، بیانگر ظرفیت بالقوه گونه فستوکا پرتنسیس برای توسعه در مناطق خشک و نیمه‌خشک است. یافته‌های پژوهش می‌تواند مبنایی برای اصلاح ارقام مقاوم به خشکی با حفظ کیفیت علوفه در برنامه‌های به‌نژادی آینده باشد. ادامه ارزیابی پایداری این ژنوتیپ‌ها در مناطق مختلف اکولوژیکی و در سال‌های متفاوت، گامی مهم در راستای بهینه‌سازی تولید علوفه در شرایط تنش آبی خواهد بود. هم‌چنین، استفاده از شاخص‌های کیفیت علوفه در کنار ویژگی‌های مقاومت به تنش می‌تواند موجب بهبود دقت انتخاب در برنامه‌های اصلاحی گردد. نتایج می‌تواند به تصمیم‌گیری در زمینه مدیریت منابع آب در سامانه‌های تولید علوفه در شرایط اقلیمی مشابه کمک نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of forage quality in Festuca pratensis Huds. genotypes under water deficit stress

نویسندگان [English]

  • sara sabertanha 1
  • fatemeh amini 2
  • ali Izadi Darbandi 3
  • Seyed Ahmad Sadat Noori 4

1 genetics and plant breeding, Department of Agronomy and Plant Breeding sciences, Aburaihan Faculty of Agricultural Technology, University of Tehran, Pakdasht, Tehran, Iran

2 Department of Agronomy and Plant Breeding Sciences, Aburaihan Faculty of Agricultural Technology, University of Tehran, Pakdasht, Tehran, Iran

3 Department of Plant Genetics and Breeding, Faculty of Agricultural Technology, University of Tehran, Pakdasht, Iran.

4 Department of Plant Genetics and Breeding, Faculty of Agricultural Technology, University of Tehran, Pakdasht, Iran

چکیده [English]

Objective: To evaluate the forage quality of Festuca pratensis genotypes under water deficit stress and identify drought-tolerant lines that maintain high nutritional value.
Methods: Twenty Festuca pratensis genotypes were obtained from NordGen (Sweden) and the ART Institute (Switzerland). Field experiments were conducted over three consecutive years (2022–2024) at the Research Farm, Faculty of Agricultural Technology, University of Tehran. A split-plot design in time within a randomized complete block design (RCBD) with three replications was used. Two irrigation regimes were imposed after full establishment: normal (100% field capacity) and water deficit (50% field capacity). Sampling occurred at the mid-flowering stage following two years of stress (May 2023 and May 2024). Forage quality, measured traits included acid detergent fiber (ADF), neutral detergent fiber (NDF), cellulose, lignin, nitrogen content, ash, dry matter intake (DMI), in vitro dry matter digestibility (IVDMD), metabolizable energy (ME), and relative feed value (RFV).
Results: The ANOVA showed that drought stress significantly affected all measured traits at P < 0.01. Significant main effects were observed for genotype and harvest, with significant stress× genotype and genotype× harvest interactions, and a significant stress× genotype× harvest interaction for all traits except cellulose. The stress× harvest interaction was significant for all traits except ash. Based on mean comparisons, genotypes 2, 13, 14, 15, 16, and 17 exhibited superior performance under drought, characterized by higher crude protein and lower ADF and NDF values, indicating enhanced forage quality under water-limited conditions.
Conclusions: Evaluating forage quality under water deficit is an effective strategy for identifying high-value, drought-tolerant Festuca pratensis genotypes. The selected genotypes demonstrate strong potential for deployment in arid and semi-arid regions. Integrating forage quality indicators with drought-tolerance traits can improve the precision of genotype selection in breeding programs. We recommend long-term, multi-location trials to assess adaptability and stability across diverse environments. The findings may inform water resource management strategies for forage production under comparable climatic conditions.

کلیدواژه‌ها [English]

  • Ash
  • Forage Quality
  • Neutral Detergent Fiber
  • Variation
حسینی‌فرد، مرجان‌السادات؛ قربانی جاوید، مجید؛ سلطانی، الیاس؛ اله‌دادی، ایرج و کهریزی، دانیال (1401). بررسی عملکرد دانه و محتوای روغن 40 لاین هاپلوئید مضاعف کاملینا (Camelina sativa L.). به‌زراعی کشاورزی، 24(2)، 497-509.
 
Amiri, F. (2010). Evaluation and applicability of the three components forage value model in strategic use of grasslands. Agriculture and Biology Journal of North America, 5 (36), 785-790.
Bibi, A., Sadaqat, H. A., Tahir, M. H. N., Fatima Usman, B., & Ali, M. (2012). Genetic analysis of forage quality traits in sorghum-sudangrass hybrids under water stress. Journal of Animal and Plant Sciences, 22(4), 1092-1100.
Biffin, T. E., Hopkins, D. L., Bush, R. D., & Smith, M. A. (2019). The effects of season and post-transport rest on alpaca (Vicunga pacos) meat quality. Meat Science, 159.
Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A., & Miron, J. (2019). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety , Tal , at two maturity stages. Animal Feed Science and Technology, 131, 121-133.
Carter, M. R., & Gregorich, E. G. (Eds.). (2008). Soil sampling and methods of analysis (2nd ed.). CRC Press.
Coblentz, W. K., Akins, M. S., & Cavadini, J. S. (2020). Fermentation characteristics and nutritive value of baled grass silages made from meadow fescue, tall fescue, or an orchardgrass cultivar exhibiting a unique nonflowering growth response. Journal of Dairy Science, 103(4), 3219-3233.
Cui, L., Xu, L., Wang, H., Fan, X., Yan, C., Zhang, Y., Jiang, C., Zhou, T., Guo, Q., Sun, Y., Yang, F., & Li, H. (2025). Evaluation of Dual-Purpose Triticale: Grain and Forage Productivity and Quality Under Semi-Arid Conditions. Agronomy, 15(4), 881.
Daduwal, H. S., Bhardwaj, R., Lamba, J. S., Vikal, Y., & Srivastava, R. K. (2025). QTL mapping and candidate gene identification for fodder quality traits in Pearl millet. BMC Plant Biology, 25(1), 404.
DeBoer, M. L., Grev, A. M., Sheaffer, C. C., Wells, M. S., & Martinson, K. L. (2020). Herbage mass, botanical composition, forage nutritive value, and preference of grass–legume pastures under horse grazing. Crop, Forage and Turfgrass Management, 6(1), 1-9.
Du, C., Ni, X., Yan, M., Meng, Q., & He, J. (2025). Physiological and transcriptome analysis reveals the mechanism of Gymnocarpos przewalskii response to drought stress. BMC Plant Biology, 25(1), 155.
Durand, J. L., Gonzalez-Dugo, V., & Gastal, F. (2010). How much do water deficits alter the nitrogen nutrition status of forage crops? Nutrient Cycling in Agroecosystems, 88(2), 231-243.
Exposito-Alonso, M., Exposito-Alonso, M., Gómez Rodríguez, R., Barragán, C., Capovilla, G., Chae, E., Devos, J., Dogan, E. S., Friedemann, C., Gross, C., Lang, P., Lundberg, D., Middendorf, V., Kageyama, J., Karasov, T., Kersten, S., Petersen, S., Rabbani, L., Regalado, J.,  Weigel, D. (2019). Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 573(7772), 126-129.
Farhadi, A., Farzad, P., Golzardi, F., Ilkaee, M., & Aghayari, F. (2022). Effects of Limited Irrigation and Nitrogen Rate on the Herbage Yield, Water Productivity, and Nutritive Value of Sorghum Silage. Communications in Soil Science and Plant Analysis, 53, 576-589.
Fariaszewska, A., Aper, J., Van Huylenbroeck, J., Baert, J., De Riek, J., Staniak, M., & Pecio. (2017). Mild Drought Stress-Induced Changes in Yield, Physiological Processes and Chemical Composition in Festuca, Lolium and Festulolium. Journal of Agronomy and Crop Science, 203(2), 103-116.
Fariaszewska, A., Aper, J., Van Huylenbroeck, J., De Swaef, T., Baert, J., & Pecio. (2020). Physiological and Biochemical Responses of Forage Grass Varieties to Mild Drought Stress Under Field Conditions. International Journal of Plant Production, 14(2), 335-353.
Farooq, M., A.Wahid, Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Review article Plant drought stress : effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
Goering, H. K., & Van, P. J. (1975). Forage fiber analyses. U.S. Department of Agriculture, 379, 387-598.
Grant, K., Kreyling, J., Dienstbach, L. F. H., Beierkuhnlein, C., & Jentsch, A. (2014). Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystems & Environment, 186, 11-22.
Hakl, J., Kunzová, E., Tocauerová, Š., Menšík, L., Mrázková, M., & Pozdíšek, J. (2021). Impact of long-term manure and mineral fertilization on yield and nutritive value of lucerne (Medicago sativa) in relation to changes in canopy structure. European Journal of Agronomy, 123(5), 1036-1050.
Heckman, R. W., Aspinwall, M. J., Taylor, S. H., Lowry, D. B., Khasanova, A., Bonnette, J. E., Razzaque, S., Fay, P. A., & Juenger, T. E. (2025). Changes in leaf economic trait relationships across a precipitation gradient are related to differential gene expression in a C4 perennial grass. New Phytologist, 246(4), 1583-1596.
Hosseinifard, M., Ghorbani Javid, M., Soltani, E., Allah dadi, I., & Kahrizi, D. (2022). Evaluation of Seed Yield and Oil Content of 40 Camelina (Camelina sativa L.) Doubled Haploid Lines. Journal of Crops Improvement, 24(2), 497-509. (In Persion).
Huang, X., Guo, W., Yang, L., Zou, Z., Zhang, X., Addo-Danso, S. D., Zhou, L., & Li, S. (2023). Effects of Drought Stress on Non-Structural Carbohydrates in Different Organs of Cunninghamia lanceolata. Plants, 12(13), 2477.
Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M., & Dashtaki, M. (2013). Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management, 117, 62-69.
Jensen, K. B., Waldron, B. L., Asay, K. H., Johnson, D. A., & Monaco, T. A. (2003). Forage nutritional characteristics of orchardgrass and perennial ryegrass at five irrigation levels. Agronomy Journal, 95(3), 668-675.
Kamran, M., Yan, Z., Jia, Q., Chang, S., Ahmad, I., Ghani, M. U., & Hou, F. (2022). Irrigation and nitrogen fertilization influence on alfalfa yield, nutritive value, and resource use efficiency in an arid environment. Field Crops Research, 284, 108587.
Küchenmeister, F., Küchenmeister, K., Kayser, M., Wrage-Mönnig, N., & Isselstein, J. (2014). Effects of drought stress and sward botanical composition on the nutritive value of grassland herbage. International Journal of Agriculture and Biology, 16(4), 715-722.
Lisar, S. Y., Motafakkerazad, R., Hossain, M. M., & Rahman, I. M. (2012). Causes, effects and responses. Water Stress, 25(1), 33.
Liu, L., Gan, Y., Bueckert, R., & Van Rees, K. (2011). Rooting systems of oilseed and pulse crops I: Temporal growth patterns across the plant developmental periods. Field Crops Research, 122(3), 256-263.
Mao, X., Li, Q., Ren, L., Bai, W., & Zhang, W. H. (2018). Application of molybdenum fertilizer enhanced quality and production of alfalfa in northern China under non-irrigated conditions. Journal of Plant Nutrition, 41(8), 1009-1019.
Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203-216.
Pabón-Pereira, C. P., Hamelers, H. V. M., Matilla, I., & van Lier, J. B. (2020). New insights on the estimation of the anaerobic biodegradability of plant material: Identifying valuable plants for sustainable energy production. Processes, 8(7), 806.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234.
Podkówka, L., Dorszewski, P., & Panka, D. (2011). Yeld, chemical composition and ensiling ability of green forage from meadow fescue (Festuca pratensis Huds.) infected with Neotyphodium uncinatum. Acta Scientiarum Polonorum. Agricultura, 10(1), 45-63.
Prajapati, B., Prajapati, J., Kumar, K., & Shrivastava, A. (2019). Determination of the relationships between quality parameters and yields of fodder obtained from intercropping systems by correlation analysis. Forage Research. 45(3), 219–224.
Ren, H., Han, G., Lan, Z., Wan, H., Schönbach, P., Gierus, M., & Taube, F. (2016). Grazing effects on herbage nutritive values depend on precipitation and growing season in Inner Mongolian grassland. Journal of Plant Ecology, 9(6), 712-723.
Rostamza, M., Chaichi, M. R., Jahansouz, M. R., & Alimadadi, A. (2011). Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agricultural Water Management, 98(10), 1607-1614.
Rushing, J.B., Saha, U.K., Lemus, R., Sonon, L., & Baldwin, B.S. (2016) Analysis of Some Important Forage Quality Attributes of Southeastern Wildrye (Elymus glabriflorus) Using Near-Infrared Reflectance Spectroscopy. Ameri-can Journal of Analytical Chemistry, 7, 642-662.
Samy, J. K. A., Rognli, O. A., & Kovi, M. R. (2020). ForageGrassBase: molecular resource for the forage grass meadow fescue (Festuca pratensis Huds.). Database, 2020, baaa046.
Sarshad, A., Talei, D., Torabi, M., Rafiei, F., & Nejatkhah, P. (2021). Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Applied Sciences, 3(1), 1-12.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021).  Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
Sheaffer, C. C., Peterson, P. R., Hall, M. H., & Stordahl, J. B. (1992). Drought Effects on Yield and Quality of Perennial Grasses in the North Central United States. Journal of Production Agriculture, 5(4), 556-561.
Shi, Z., Liang, G., Liu, W., Li, S., & Qin, Y. (2024). Heliyon Optimization of nitrogen and phosphorus fertilization for enhanced forage production and quality of Festuca Krylovianacv. Huanhu artificial grassland in alpine regions. Heliyon, 10(15), e35116.
Staniak, M. (2016). The impact of drought stress on the yields and food value of selected forage grasses. Acta Agrobotanica, 69(2), 1-12.
Staniak, M., & Harasim, E. (2018). Changes in nutritive value of alfalfa (Medicago × varia T. Martyn) and Festulolium (Festulolium braunii (K. Richt) A. Camus) under drought stress. Journal of Agronomy and Crop Science, 204(5), 456-466.
Tavazoh, M., Habibi, D., Golzardi, F., Ilkaee, M. N., & Paknejad, F. (2024). Effect of drought stress on morpho-physiological characteristics, nutritive value, and water-use efficiency of sorghum (Sorghum bicolor L.) Moench) varieties under various irrigation systems. Brazilian Journal of Biology, 84, e286121.
Thiex, N. J., Manson, H., Anderson, S., & Persson, J. Å. (2002). Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: Collaborative study. Journal of AOAC International, 85(2), 309-317.
Thiex, N., Novotny, L., & Crawford, A. (2012). Determination of ash in animal feed: AOAC Official Method 942.05 revisited. Journal of AOAC International, 95(5), 1392-1397.
Wójtowicz, T., & Zieliński, A. (2021). Variability of Selected Traits in Meadow Fescue (Festuca pratensis Huds.) Plants with Different Susceptibility to Seed Shattering. Biology and Life Sciences Forum, 3(1), 23.
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597.
Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book/American Society of Plant Biologists, 8, e0140.
Wang, J. P., Bughrara, S. S., & Nelson, C. J. (2008). Morpho-physiological responses of several fescue grasses to drought stress. HortScience, 43(3), 776-783.
Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: A renewed focus on its role in ecological processes. Annals of Botany, 127(4), 397-410.
Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781-803.