نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده‌گان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه کشاورزی اکولوژیک، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران.

10.22059/jci.2025.387384.2910

چکیده

هدف: پژوهش حاضر به‌منظور مستندسازی شرایط تولید و کمی‌سازی خلأ عملکرد گیاهان گندم و جو پاییزه در استان البرز با استفاده از مدل‌های زراعی و اقلیمی انجام شد.
روش پژوهش: جهت پیش‌بینی متوسط عملکرد پتانسیل منطقه طی 10 سال گذشته از زیرمدل‌های نسخه 1/7 مدل اپسیم (APSIM-Wheat و APSIM-Barley) استفاده شد. به این منظور ابتدا زیرمدل‌های یادشده برای ارقام غالب تعیین‌شده پارامتریابی و سپس کارایی مدل برای پیش‌بینی عملکرد ارقام موردارزیابی قرار گرفت. برای انجام عمل پارامتریابی و ارزیابی مدل نیاز به داده‌های هواشناسی، مدیریت رایج در منطقه و ضرایب ژنتیکی ارقام بود. جهت جمع‌آوری این داده‌ها، پژوهشی چهارساله در دو بخش مزرعه‌ای و میدانی انجام شد. جهت پارامتریابی مدل، آزمایشی دوساله در مزرعه سازمان انرژی اتمی (سال‌ زراعی 94-1393) و دانشکده کشاورزی دانشگاه تهران (سال زراعی 96-1395) در قالب طرح بلوک‌های کامل تصادفی با 12 تیمار (شش رقم جو و شش رقم گندم) و سه تکرار انجام شد. با استفاده از داده‌های آزمایش مزرعه‌ای، ضرایب ژنتیکی ارقام شناسایی و مدل بر مبنای آن بومی‌سازی شد. جهت ارزیابی مدل نیز نمونه‌برداری میدانی طی سال‌های زراعی 98-1397 و 99- 1398، از 60 مزرعه منتخب منطقه نظرآباد واقع در استان البرز صورت گرفت.
یافته‌ها: در هر دو سال آزمایش شاخص‌های ارزیابی مدل (nRMSE، CRM، D-index و R2) کارایی زیرمدل‌های اپسیم در شبیه‌سازی عملکرد گندم و جو را تأیید کردند. نتایج حاصل از شبیه‌سازی نشان داد که در شرایط پتانسیل، طی 10 سال گذشته گیاهان گندم و جو در استان البرز به‌طور متوسط توانایی تولید 10800 و 10350 کیلوگرم در هکتار عملکرد دانه را داشتنه‌اند. خلأ عملکرد گندم در سطح یک (اختلاف عملکردهای پتانسیل و کشاورزان پیشرو)، سطح دو (اختلاف عملکردهای کشاورزان پیشرو و قابل‌دسترس)، سطح سه (اختلاف عملکردهای قابل‌دسترس و واقعی) و سطح چهار (اختلاف عملکرد واقعی و متوسط منطقه)، به‌ترتیب 5/18، 9/14، 5/26، 3/18 درصد و در جو به‌ترتیب 5/29، 1/3، 0/24 و 7/23 درصد بود. عوامل مدیریتی ازجمله دور آبیاری، حجم آب مصرفی در طول فصل رشد، تاریخ کاشت، رقم مورد کاشت، میزان کود مصرفی نیتروژن و تراکم گیاهی، مهم‌ترین عوامل مؤثر بر خلأ عملکرد گندم و جو در استان البرز بودند.
نتیجه‌گیری: بنا بر نتایج این بررسی، کشاورزان منطقه می‌توانند با اتخاذ راهبردهای مناسب و بهینه مدیریتی (سطوح مختلف رژیم‌های رطوبتی، کودی، تاریخ کشت‌ و رقم مناسب کشت)، ضمن افزایش تولیدات منطقه در حفظ منابع کشور مؤثر باشند. در این راستا استفاده از مدل زراعی اپسیم نیز در پیش‌بینی، سناریوسازی و اتخاذ تصمیم‌های مدیریتی می‌تواند راه‌گشا باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Documenting Production Conditions and Quantifying the Yield Gap of Winter Wheat and Barley in Alborz Province by Using the APSIM Model

نویسندگان [English]

  • Sorayya Navid 1
  • Mohammadreza Jahansuz 1
  • Saied Soufizadeh 2

1 Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

چکیده [English]

Objective: This study aimed to characterize the production conditions and quantify the yield gap of spring wheat and barley in Alborz province using crop and climate models.
Method: The potential regional yield over the past decade was estimated using the APSIM-7.1 sub-models (APSIM-Wheat and APSIM-Barley). These models were first parameterized for dominant local cultivars, and their performance evaluated using climatic data, regional management practices, and genetic coefficients. Data collection involved a four-year study in two phases: farm and field. Parameterization was based on a two-year experiment (2014–2015 at the Atomic Energy Organization farm and 2016–2017 at the University of Tehran), employing a randomized complete block design with 12 treatments (six wheat and six barley cultivars) and three replications. Model evaluation used data from 60 farms in Nazarabad during 2018–2019 and 2019–2020.
Results: Model evaluation indices (nRMSE, CRM, D-index, R²) confirmed the effectiveness of APSIM in simulating wheat and barley yields. Simulations indicated potential yields of approximately 10,800 kg/ha for wheat and 10,350 kg/ha for barley over the past 10 years. The yield gaps at different levels were: Level 1 (difference between potential and leading farmers) –18.5% for wheat and 29.5% for barley; Level 2 (available vs. leading farmers) –14.9% and 3.1%; Level 3 (available vs. actual yields) –26.5% and 24.0%; and Level 4 (actual vs. regional average yields) –18.3% and 23.7%. Key management factors influencing yield gaps included irrigation schedule, water use, planting date, cultivar choice, nitrogen application, and plant density.
Conclusions: Adopting optimal management practices—such as tailored irrigation, fertilizer application, planting timing, and cultivar selection—can help farmers reduce yield gaps and conserve resources. The APSIM model proves valuable for forecasting, scenario analysis, and decision-making aimed at improving productivity in Alborz province.

کلیدواژه‌ها [English]

  • Actual yield
  • Moisture regime
  • Planting date
  • Potential yield
  • Simulation of yield
  • Yield gap
Ahmed, M., Akram, M.N., Asim, M., Aslam, M., Hassan, F., Higgins, S., Stockle, C., & Hoogenboom, G. (2016). Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 384-401. https://doi.org/10.25081/jp.2024.v16.8810.
Alsayaydeh, R., Bawalize, A., Al-Ajloumi, Z., Akash, M.W., Abuelenein, J., & Alabdallat, M. (2019). Agronomic evaluation and yield performance of selected Barley (Hordeum vulgare L.) Landraces from Jordan. International Journal of Agronomy, 5(2), 1-12. https://doi.org/10.1155/2019/9575081.
Andarzian, B., Bannayan, M., Steduto, P., Mazrae, H., Barati, M.E., Barati, M.A., & Rahnama, A. (2011). Validation and testing of the AcuaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100(1), 1-8. https://doi.org/10.1016/j.agwat.2011.08.023.
Bannayan, M., Hoogenboom, G., & Crout, N.M.J. (2009). Photothermal impact on maize performance: a simulation approach. Ecological Modeling, 180, 277-290. https://doi.org/10.1016/j.ecolmodel.2004.04.022.
Corraliza, M.G., Rplp, V., Lopez, M.L., & Moreno, G. (2019). Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Nature, Scientific Reports, 9, 9547. https://doi.org/10.1038/s41598-019-46027-9.
Devkota, K.P., Hoogenbom, G., Boote, K.J., Singh, U., Lamers, J.P.A., Devkota, M., & Velk, P.L.G. (2015). Simulating the impact of water saving irrigation and conservation agriculture practices for rice – wheat systems in the irrigated semi-arid drylands of Central Asia. Agricultural and Forest Meteorology, 214, 266-280. https://doi.org/10.1016/j.agrformet.2015.08.264.
Dexter, A.R. (2004). Soil physical quality: Effects of soil texture, density, and organic matter, and effect on root growth. Geoderma, 120, 201-214. https://doi.org/10.1016/j.geoderma.2003.09.004.
Donatelli, M., & Confalonieri, R. (2011). Biophysical models for cropping system simulation, in: Flichman, G. (Eds). Bio-Economic Models applied to agricultural Systems, pp, 59-87.
Fallahzade, J., & Hajabbasi, M.A. (2011). Changes in soil quality indicators by reclamation of salt–affected land in Abarkooh Plain, Central Iran. Journal of Water and Soil Science, 15(55), 139-150. https://doi.org/20.1001.1.24763594.1390.15.55.11.9.
FAO. (2022). Food and Agricultural Organization of the United Nations (FAO), FAO Statistical Database, from http://faostat.fao.org.
Frank, S., Schmid, E., Havilk, P., Schneider, U.A., Bottcher, H., Balkovic, J., & Obersteiner, M. (2015). The dynamic soil organic carbon mitigation potential of European cropland. Global. Environmental Change, 35, 269-278. https://doi.org/10.1016/j.gloenvcha.2015.08.004.
Gaydon, D.S., Wang, E., Poulton, P.L., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A.K., & Chen, C. (2017). Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52-75. https://doi.org/10.1016/j.fcr.2016.12.015.
Gharineh, M.H., Bakhshandeh, A.M., Andarzian, B., & Fayezizadeh, N. (2012). Agro-climatic zonation of Khuzestan province based on potential yield of irrigated wheat using WOFOST model. Agroecology, 4, 255-264. https://doi.org/10.22067/jag.v4i3.15314.
Hao, S., Ryo, D., Western, A., Perry, E., Bogena, H., Jan, H. & Franssen, H. (2021). Performance of a wheat yield prediction model and factors influencing the performance. Agricultural Systems, 194, 103-225. https://doi.org/10.1016/j.agsy.2021.103278.
Hatfield, J.L., & Beres, B.L. (2019). Yield gaps in wheat: path to Enhancing productivity. Front Plant Science. 10, 1603. https://doi.org/10.3389/fpls.2019.01603.
Hochman, Z., Gobbett, D., Horan, H., & Garcia, J.N. (2017). Data rich yield gap analysis of wheat in Australia. Field Crops Research, 197, 97-106. https://doi.org/ 10.1016/j.fcr.2016.08.017.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., & Smith, C.J. (2024). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy. 18(3), 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9.
Laleh, K.M., Ghorbani Javid, M., Alahdadi, I., Soltani, E., Soufizadeh, S., & Gonzalez-Andujar, J.L. (2023). Wheat yield gap assessment in using the comparative performance analysis (CPA). Agronomy, 13, 705. https://doi.org/10.3390/agronomy13030705.
Loague, K., & Green, R.W. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7, 51-73. https://doi.org/10.1016/0169-7722(91)90038-3.
Ma, Y., Feng, S., & Song, X. (2015). Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Agriculture Journal, 116, 125-136. https://doi.org/10.1016/j.agwat.2023.108229.
Mc-Nill, A., & Unkovich, M. (2007). The Nitrogen Cycle in Terrestrial Ecosystems. Springer, Pp. 37-64. https://doi.org/10.1007/978-3-540-68027-7_2.
Mihret, Y.C., Ketsela, G.M., & Mintesinot, S.M. (2024). Implementation and application of APSIM for crop modelling in Ethiopia: A comprehensive review. Heliyon, 10(10), e31612. https://doi.org/10.1016/j.heliyon.2024.e31612.
Pasuquin, J.M., Pampolino, M.F., Witt, C., Dobermann, A., Oberthur, T., Fisher, M.J., & Inubushi, K. (2014). Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management. Field Crops Research. 219-230. https://doi.org/10.1016/j.fcr.2013.11.016.
Sadras, V.O., & Denison, R.F. (2016). Neither crop genetics nor crop management can be optimized. Field Crop Research, 189, 75-83. https://doi.org/10.1016/j.fcr.2016.01.015.
Van Wart, J., Kersebaum, K.C., Peng, S., Milner, M., & Cassman, K.G. (2013). Estimating crop yield potential at regional to national scales. Field Crop Research, 143, 34-43. https://doi.org/10.1016/j.fcr.2012.11.018.
Vander Linkden, A., Oosting, S.J., Vande Ven, G.W., De Boer, I.J., & Van Ittersum, M.K. (2015). A framework for quantitative analysis of livestock systems using theoretical concepts of production ecology. Agricultural Systems, 139, 100-109. https://doi.org/10.1016/j.agsy.2015.06.007.
Vanittersum, M.K., Howden, S.M., & Asseng, S. (2016). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment, 97 (1), 25-35. https://doi.org/10.1016/S0167-8809(03)00114-2
Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309-1313. http://dx.doi.org/10.1175/1520-0477(1982)063.
Zhao, P., Zhou, Y., Li, F., Ling, X., Deng, N., Peng, S., & Man, J. (2020). The adaptability of Apsim-Wheat model in the middle and lower reaches of the Yangtze River plain of China: a case study of winter wheat in Hubei province. Agronomy, 10, 981-995. https://doi.org/10.3390/agronomy10070981.