نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22059/jci.2024.366323.2859

چکیده

هدف: شوری، یکی از مهم‌ترین تنش‏های غیرزیستی است که تولید محصولات کشاورزی را کاهش می‏دهد. استفاده از ترکیبات محرک رشد به‌منظور کاهش اثرات تنش‏های محیطی در گیاهان اهمیت خاصی دارد. از این رو تحقیق حاضر به‌منظور بررسی اثر سالیسیلیک‌اسید و سلنات‌سدیم بر رشد، خصوصیات فیزیولوژیکی و بیوشیمیایی سرخارگل (Echinacea angustifolia) در سال 1401 در گلخانه تجاری گیاهان زینتی در استان البرز در شرایط تنش شوری انجام شد.
روش پژوهش: فاکتورهای موردمطالعه در پژوهش، شامل شوری در سه سطح (صفر، 100 و 200 میلی‏مولار کلریدسدیم) و محلول‏پاشی با سالیسیلیک‌اسید و سلنیمسلنات‌سلنیم در پنج سطح (شاهد، 5 و 10 میلی‏گرم در لیتر سلنات‌سدیم و 5/0 و 1 میلی‏مولار سالیسیلیک‌اسید) به‌صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی در 3 تکرار صورت گرفت.
یافته‌ها: نتایج پژوهش نشان داد که 200 میلی‏مولار تنش شوری سبب کاهش معنی‏دار وزن تراندام هوایی (32 درصد)، وزن خشک ریشه (27 درصد)، کلروفیل کل (22 درصد)، محتوای نسبی آب برگ (16 درصد) و پتاسیم برگ (28 درصد) گردید، اما سبب افزایش نشت یونی (11 درصد)، فعالیت آنزیم کاتالاز (82 درصد)، فعالیت آنزیم سوپراکسید دیسموتاز (37/1 برابر) و سدیم برگ (19/2 برابر) شد. محلو‏ل‏پاشی با محرک‏های زیستی به‌ویژه 1 میلی‏مولار سالیسیلیک‌اسید سبب افزایش وزن تر ریشه (07/13 درصد)،  وزن خشک ریشه (74/13 درصد) و وزن تر اندام هوایی (59/15 درصد)، کلروفیل a، b و کل (به‌ترتیب 13/13، 29/14 و 08/12 درصد)، ، محتوای نسبی آب برگ (95/6 درصد)، عملکرد اسانس (59/27 درصد) شد. تیمار اثر متقابل شوری 100 میلی‏مولار و سالیسیلیک‌اسید یک میلی‏مولار دارای بیش‌ترین محتوای فنل، فلاونوئید و درصد اسانس بودند و بیش‌ترین وزن اندام هوایی گیاه و عملکرد اسانس در تیمار بدون تنش با سالیسیلیک‌اسید یک میلی‏مولار به‌دست آمد.
نتیجه‌گیری: در مجموع استفاده از محرک‏های زیستی و به‌ویژه سالیسیلیک‌اسید 1 میلی‏مولار در شرایط تنش شوری در سرخارگل مورد پیشنهاد خواهد بود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Salicylic Acid and Sodium Selenite on Growth and Photochemical Attributes of Coneflower (Echinacea angustifolia) Under Salinity Stress

نویسندگان [English]

  • Hamed Adeli 1
  • Sepideh Kalateh jari 2
  • Marjan Diyanat 2

1 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

Objective: Salinity is one of the most important abiotic stresses that reduces the production of agricultural products. The use of growth stimulating compounds in order to reduce the effects of environmental stress in plants is of particular importance. The present study was conducted to investigate the effect of salicylic acid and sodium selenate on the growth, physiological and biochemical characteristics of coneflower (Echinacea angustifolia) in 2023 at the commercial greenhouse of ornamental plants in Alborz province under salinity stress conditions.
Methods: The factors studied in the research include salinity at three levels (zero, 100 and 200 mM sodium chloride) and spraying with salicylic acid and selenium selenate at five levels (control, 5 and 10 mg/l of sodium selenate and 0.5 and 1 mM salicylic acid), conducted factorially in the form of a basic completely randomized design in 3 replications.
Results: The results of the research showed that 200 mM of salinity stress caused a significant decrease in the fresh weight of aerial parts (32%), dry weight of roots (27%), total chlorophyll (22%), and relative water content of leaves (16%). and leaf potassium (28%), but caused an increase in ion leakage (11%), catalase enzyme activity (82%), superoxide dismutase enzyme activity (1.37 times), and sodium leaf (2.19 times). Foliar application of bio-stimulants, especially 1 mM salicylic acid, increased the fresh weight (13.07%), root dry weight (13.74%), shoot fresh weight (15.59%), chlorophyll a, b, and total content (13.13%, 14.29%, and 12.08% respectively), relative leaf water content (6.95%), and essential oil yield (27.59%). The interactive treatment of 100 mM salinity and 1 mM salicylic acid had the highest phenol and flavonoid content and essential oil percentage. The highest shoot weight and essential oil yield were obtained in the treatment without stress with 1 mM salicylic acid.
Conclusion: Taken together, applying biological stimulants, especially 1 mM salicylic acid, will be recommended under salinity stress conditions in coneflower.

کلیدواژه‌ها [English]

  • biostimulant
  • Coneflower
  • Essential oil yield
  • total phenol
زارع، فرشاد؛ خراسانی‏نژاد، سارا و همتی، خدایار (1397). اثر سیلیسیم در برخی صفات مورفوفیزیولوژیک و فیتوشیمیایی گیاه دارویی سرخارگل (Echinacea purpurea L.) در تنش شوری. نشریه زیست‌شناسی گیاهی ایران، 10(3)، 68-55.
فاضلی، آرش؛ زارعی، بتول و طهماسبی، زهرا (1396). تأثیر تنش شوری و سالیسیلیک‌اسید بر برخی ویژگی‌های فیزیولوژیک و بیوشیمیایی سیاه‌دانه (Nigella sativa L.). نشریه زیست‌شناسی گیاهی ایران، 9(4)، 84-69.
نیک‏بخت، جعفر؛ محمدی، ابراهیم و برزگر، طاهر (1399). تأثیر محلول‏پاشی سالیسیلیک‌اسید در شرایط کم آبیاری بر عملکرد و کارآیی مصرف آب خیار (Cucumis sativus cv. Kish F1). تحقیقات آب و خاک ایران (علوم کشاورزی ایران)، 51(3 )، 561-553.
Afshari, M., Pazoki, A., & Sadeghipour, O. (2021). Foliar-applied Silicon and its Nanoparticles Stimulates Physio-chemical Changes to Improve Growth, Yield and Active Constituents of Coriander (Coriandrum sativum L.) Essential oil Under Different Irrigation Regimes. Silicon, 13, 4177-4188.
Ahmad, Z., Anjum, S., Skalicky, M., Waraich, E.A., Muhammad Sabir Tariq, R., Ayub, M.A., Hossain, A., Hassan, M.M., Brestic, M., Sohidul Islam, M., & Habib-Ur-Rahman, M. (2021). Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules, 26(6), 1699.
Ahmed, I.A., Mikail, M.A., Bin Ibrahim, M., Bin Hazali, N., Rasad, M.S., Ghani, R.A., Wahab, R. A., Arief, S. J., & Yahya, M. N. (2015). Antioxidant activity and phenolic profile of various morphological parts of underutilized Baccaurea angulata fruit. Food Chemistry, 172, 778-87.
Alawamleh, H. S. K., Jabbari, H., Moradkhani, S., & Babashpour-Asl, M. (2023). Cold plasma and foliar-applied selenium nanoparticles modulated cadmium toxicity through changes in physio-biochemical properties and essential oil profile of Sage (Salvia officinalis L.). Journal of Soil Science and Plant Nutrition, 23, 1-15.
Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M. R., Abbasi, G. H., & Ali, S. (2021). Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiology and Biochemistry, 158, 208-218.
Amiripour, A., Ghanbari Jahromi, M., Soori, M. K., & Mohammadi Torkashvand, A. (2021). Changes in essential oil composition and fatty acid profile of coriander (Coriandrum sativum L.) leaves under salinity and foliar-applied silicon. Industrial Crops and Products, 168, 113599.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T., Muhammad, H., & Rahimi, M. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports, 13(1), 2895.
Babashpour-Asl, M., Farajzadeh-Memari-Tabrizi, E., & Yousefpour-Dokhanieh, A. (2022). Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. Environmental Science and Pollution Research, 29(53), 80021-80031.
Bakhtiari, M., Sadati, F., & Sadati, S. (2023). Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. Environmental Science and Pollution Research, 30, 1-11.
Batra, N., Kumari, N., & Sharma, V. (2023). Salt stress in plants and amelioration strategies: alleviation of agriculture and livelihood risks after the Covid-19 pandemic. Vegetos, 36, 268-274.
Ben-Hamed, K., Castagna, A., Salem, E., Ranieri, A., & Abdelly, C. (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53, 185-194.
Burlou-Nagy, C., Bănică, F., Jurca, T., Vicaș, L.G., Marian, E., Muresan, M. E., & Pallag, A. (2022). Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants, 11(9), 1244.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3).
Chapman, H. D., & Pratt, P. F. (1962) Methods of Analysis for Soils, Plants and Waters. Soil Science, 93, 68.
Chrysargyris, A., Michailidi, E., & Tzortzakis, N. (2018). Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Frontiers in Plant Science, 9, 489.
Dawood, M. F., Zaid, A., & Latef, A. A. H. A. (2022). Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings. Journal of Plant Growth Regulation, 41(5), 1919-1942.
Decros, G., Baldet, P., Beauvoit, B., Stevens, R., Flandin, A., Colombié, S., Gibon, Y., & Pétriacq, P. (2019). Get the balance right: ROS homeostasis and redox signalling in fruit. Frontiers in Plant Science, 10, 1091.
Dehestani-Ardakani, M., Gholamnezhad, J., Alizadeh, S., Meftahizadeh, H., & Ghorbanpour, M. (2022). Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flower. South African Journal of Botany, 150, 1192-1204.
Emami Bistgani, Z., Siadat, A., Bakhshandeh, A. M., Ghasemi Pirbalouti, A., Hashemi, M., Maggi, F., & Morshedloo, M. R. (2018). Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Industrial Crops and Products, 121(1), 434-440.
Es-sbihi, F. Z., Hazzoumi, Z., & Amrani Joutei, K. (2020). Effect of salicylic acid foliar application on growth, glandular hairs and essential oil yield in Salvia officinalis L. grown under zinc stress. Chemical and Biological Technologies in Agriculture, 7, 1-11.
Fathi, S., Kharazmi, M., & Najafian, S. (2019). Effects of salicylic acid foliar application on morpho-physiological traits of purslane (Portulaca olaracea L.) under salinity stress conditions. Journal of Plant Physiology and Breeding, 9(2), 1-9.
Fazeli, A., Zarei, B., & Tahmasebi, Z. (2017). The effect of salinity stress and salicylic acid on some physiological and biochemical traits of Black cumin (Nigella sativa L.). Iranian Journal of Plant Biology, 9(4), 69-84. (In Persian).
Fu, H., & Yang, Y. (2023). How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 45, 5914-5934.
Ghasemian, S., Masoudian, N., Saeid Nematpour, F., & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76(10), 2879-2888.
Giannopolitis, C. N., & Ries, S. K. (1977) Superoxide Dismutases I. Occurrence in Higher Plants. Plant Physiology, 59, 309-314.
González-García, M., Álvarez, J. C., Pérez, E. Z., Fernandez-Carriba, S., & López, J. G. (2021). Feasibility of a Brief Online Mindfulness and Compassion-Based Intervention to Promote Mental Health Among University Students During the COVID-19 Pandemic. Mindfulness (N Y), 12(7), 1685-1695.
Gorni, P. H., Pacheco, A. C., Moro, A. L., Silva, J. F. A., Moreli, R.R., de Miranda, G. R., & da Silva, R. M. G. (2020). Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Scientia Horticulturae, 270, 109436.
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., & Nielsen, B. L. (2021). Effects of Salinity Stress on Chloroplast Structure and Function. Cells, 10(8), 2023.
Hasanuzzaman, M., Bhuyan, M. B., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Al Mahmud, J., & Fujita, M. (2020). Selenium in plants: Boon or bane? Environmental and Experimental Botany, 178, 104170.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. International Journal of Molecular Sciences, 23(9), 5186.
Inbar, J., Abramsky, M., Cohen, D., & Chet, I. (1994). Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 100(5), 337-346.
Jalil, S. U., & Ansari, M. I. (2019). Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. Plant Signaling Molecules, 549-561.
Karimi, R., Ghabooli, M., Rahimi, J., & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43(14), 2226-2242.
Kaur, G., Tak, Y., & Asthir, B. (2022). Salicylic acid: A key signal molecule ameliorating plant stresses. Cereal Research Communications, 1-10.
Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H. U., Chung, S. M., & Kumar, M. (2023). Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants (Basel), 12(4), 864.
Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. Frontiers in Plant Science, 7(10), 1429.
Khan, A. Z., Ding, X., Khan, S., Ayaz, T., Fidel, R., & Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543.
Lu, C., Li, L., Liu, X., Chen, M., Wan, S., & Li, G. (2023). Salt Stress Inhibits Photosynthesis and Destroys Chloroplast Structure by Downregulating Chloroplast Development–Related Genes in Robinia pseudoacacia Seedlings. Plants12, 1283.
MacAdam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of elongation zone. Plant Physiology, 99, 872-878.
Memari-Tabrizi, E. F., Yousefpour-Dokhanieh, A., & Babashpour-Asl, M. (2021). Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant Physiology and Biochemistry, 165, 71-79.
Mirzaie, M., Ladanmoghadam, A. R., Hakimi, L., & Danaee, E. (2020). Water stress modifies essential oil yield and composition, glandular trichomes and stomatal features of lemongrass (Cymbopogon citratus) inoculated with arbuscular mycorrhizal fungi. Journal of Agricultural Science and Technology, 22(6), 1575-1585.
Mohammad, F., Wajid, M. A., & Bhat, M. A. (2019). Effect of Salicylic Acid Sprays on the Performance of Fenugreek Grown with Graded Levels of Salinity. Haya: The Saudi Journal of Life Sciences, 4, 346-354.
Moradi, S., Sajedi, N. A., Madani, H., Gomarian, M., & Chavoshi, S. (2023). Integrated effects of nitrogen fertilizer, biochar, and salicylic acid on yield and fatty acid profile of six rapeseed cultivars. Journal of Soil Science and Plant Nutrition, 23(1), 380-397.
Mousavi, S.A., Roosta, H.R., Esmaeilizadeh, M., & Eshghi, S. (2022). Alleviating the adverse effects of salinity and alkalinity stresses on some physiological traits by selenium and silicon foliar applications on cucumber (Cucumis sativus L.) plants. Journal of Plant Nutrition, 46(4), 556-573.
Nikbakht, J., Mohammadi, E., & Barzegar, T. (2020). Effect of salicylic acid foliar application under deficit irrigation conditions on yield and water use efficiency in Cucumber (Cucumis sativus cv. Kish F1). Iranian Journal of Soil and Water Research, 51(3), 553-561. (In Persian).
Oraei, M., Gohari, G., Panahirad, S., Zareei, E., & Zaare-Nahandi, F. (2019). Effect of salicylic acid foliar application on Vitis vinifera L. cv. ‘sultana’under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 18(2), 159-169.
Ouchikh, O., Chahed, T., Ksouri, R., Taarit, M. B., Faleh, H., Abdelly, C., & Marzouk, B. (2011). The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. Journal of Food Composition and Analysis, 24(1), 103-110.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075.
Pourebrahimi, M., Eshghi, S., Ramezanian, A., & Faghih, S. (2023). Selenium and Hydrogen Sulfide Mitigate the Adverse Effects of Salinity on Growth, Yield, and Mineral Nutrient Status in Strawberry. Journal of Soil Science and Plant Nutrition, 23, 4218-4232.
Radwan, A. M., Ahmed, E. A., & Donia, A. M. et al. (2023). Priming of Citrullus lanatus var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. Scientific Reports13, 11884.
Rasheed, F., Anjum, N. A., Masood, A., Sofo, A., & Khan, N.A. (2020). The key roles of salicylic acid and sulfur in plant salinity stress tolerance. Journal of Plant Growth Regulation, 1-14.
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111.
Rohani, N., Daneshmand, F., Vaziri, A., Mahmoudi, M., & Saber-Mahani, F. (2019). Growth and some physiological characteristics of Pistacia vera L. cv Ahmad Aghaei in response to cadmium stress and Glomus mosseae symbiosis. South African Journal of Botany, 124, 499-507.
Shalaby, T. A., Abd-Alkarim, E., El-Aidy, F., Hamed, E. S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., & Dos Reis, A. R. (2021). Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 212, 111962.
Silva, J. M., da Silva Júnior, G. B., Bonifácio, A., Dutra, A. F., de Mello Prado, R., de Alcântara Neto, F., & de Sousa, R. S. (2023). Exogenous salicylic acid alleviates water stress in watermelon plants. Annals of Applied Biology, 182(1), 121-130.
Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 1-7.
Subramanyam, K., Du Laing, G., & Van Damme, E. J. (2019). Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Frontiers in Plant Science, 10, 116.
Tavakoli, S., Enteshari, S., & Yousefifard, M. (2020). Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in Melissa officinalis. Iranian Journal of Plant Physiology10, 3125-3134.
Tufail, B., Ashraf, K., Abbasi, A., Ali, H. M., Sultan, K., Munir, T., & Zaman, Q. (2023). Effect of Selenium on Growth, Physio-Biochemical and Yield Traits of Lettuce under Limited Water Regimes. Sustainability, 15(8), 6804.
Tyub, S., Dar, S. A., Lone, I. M., Mir, A.H., & Kamili, A. N. (2021). A robust in-vitro protocol for shoot multiplication of Echinacea angustifolia. Current Plant Biology, 28, 100221.
Wungrampha, S., Joshi, R., Singla-Pareek, S., & Pareek, A. (2018). Photosynthesis and salinity: are they mutually exclusive? Photosynthetica, 56, 366-381.
Xuan, T. D., Huong, C. T., Quan, N. V., Anh, L. H., Khanh, T. D., & Rayee, R. (2022). Improvement of Salinity Tolerance in Rice Seedlings by Exogenous Magnesium Sulfate Application. Soil Systems, 6(3), 69.
Yan, G., Fan, X., Peng, M., Yin, C., Xiao, Z., & Liang, Y. (2020) Silicon Improves Rice Salinity Resistance by Alleviating Ionic Toxicity and Osmotic Constraint in an Organ-Specific Pattern. Frontiers in Plant Science11, 260. 
Yang, H., Fang, R., Luo, L., Yang, W., Huang, Q., Yang, C., Hui, W., Gong, W., & Wang, J. (2023) Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. Frontiers in Plant Science, 14, 1226041.
Yu, D., Yuan, Y., Jiang, L., Tai, Y., Yang, X., Hu, F., & Xie, Z. (2013). Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pakistan Journal of Pharmaceutical Sciences, 26(2), 403-8.
Zare, F., Khorasaninejad, S., & Hemmati, K. (2018). The effect of silicon on some morpho-physiological and phytochemical traits of Purple Coneflower (Echinacea purpurea L.) under salinity stress. Iranian Journal of Plant Biology, 10(3), 55-68. (In Persian).
Zhang, M., Li, X., Wang, X., Feng, J., & Zhu, S. (2023) Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities. Frontiers in Plant Science14, 1161469.
Zulfiqar, F., & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 160, 257-268.