نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

هدف: مطالعه اثرات آزوسپریلیوم و نانوذرات (روی و سیلیکون) بر عملکرد دانه و برخی صفات تریتیکاله آزمایشی به­صورت فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی در سه تکرار در گلخانه تحقیقاتی دانشگاه محقق اردبیلی در سال 1400 اجرا شد.
روش پژوهش: فاکتورهای آزمایشی شوری (عدم اعمال شوری به­عنوان شاهد، شوری 60 ‌و 120 میلی‌مولار با نمک کلریدسدیم)، کاربرد آزوسپریلیوم (عدم تلقیح به‌عنوان شاهد و تلقیح بذر با باکتری آزوسپریلیوم) و محلول‌پاشی با نانوذرات (محلول‌پاشی با آب به‌عنوان شاهد، محلول‌پاشی 8/0 گرم در لیتر نانواکسید روی، محلول‌پاشی 50 میلی­گرم در لیتر نانوسیلیکون، محلول‌پاشی توأم توأم 4/0 میلی‌گرم در لیتر نانواکسید روی و 25 میلی­گرم در لیتر نانوسیلیکون) شامل می­شدند.
یافته‌ها: کاربرد آزوسپریلیوم و نانوذرات در شوری 120 میلی‌مولار، محتوای پرولین (46/37 درصد)، پراکسید هیدروژن (66/41 درصد)، مالون­دی­آلدهید (57/37 درصد) و فعالیت آنزیم‌های پراکسیداز و پلی­فنل­اکسیداز (به­ترتیب 86/53 و 47 درصد) را نسبت به عدم اعمال شوری و عدم کاربرد آزوسپریلیوم و نانوذرات افزایش داد. کاربرد آزوسپریلیوم و نانوذرات محتوای قندهای محلول (68/18 درصد) و آنزیم کاتالاز (28 درصد) نسبت به عدم کاربرد آزوسپریلیوم و عدم محلول‌پاشی افزایش ­داد. عدم کاربرد آزوسپریلیوم و عدم محلول‌پاشی نانوذرات در شوری 120 میلی‌مولار، انتقال ماده خشک از اندام هوایی (25/54 درصد) و سهم انتقال ماده خشک از اندام هوایی در عملکرد دانه (14/126 درصد) را نسبت به شرایط کاربرد آزوسپریلیوم و نانوذرات در عدم اعمال شوری افزایش داد.
نتیجه‌گیری: به‌نظر می‌رسد کاربرد آزوسپریلیوم و محلول پاشی نانوذرات می‌تواند به‌واسطه بهبود صفات بیوشیمیایی در شرایط شوری، عملکرد تریتیکاله را افزایش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

The Impact of Si and Zn Nanoparticles and Seed Inoculation with Azospirillum on the Biochemical Compounds and Remobilization of Triticale under Salinity Stress

نویسندگان [English]

  • zahra mohammadzadeh
  • Raouf Seyed sharif
  • Salim Farzaneh

Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

چکیده [English]

Objective: Studying the effects of Azospirillum and nanoparticles (silicon and zinc) on grain yield and some traits of Triticale under salinity stress was conducted as a factorial experiment with randomized complete block design and three replications at the research greenhouse of the University of Mohaghegh Ardabili in 2022.
Methods: The experimental factors included salinity levels (no salinity as control, salinity of 60 and 120 mM by NaCl), application of Azospirillum (no inoculation as control and seed inoculation with Azospirillum), nanoparticles foliar application (foliar application with water as control, foliar spraying 0.8 g.L-1 nano zinc oxide, 50 mg.L-1 nano silicon, combined foliar application of nano zinc oxide as 0.4 g.L-1 and nano silicon as 25 g.L-1).
Results: The application of Azospirillum and nanoparticles in 120mM salinity increased proline content (37.46 percent), hydrogen peroxide (41.66 percent), malondialdehyde (37.57 percent) and the activity of peroxidase and polyphenol oxidase enzymes (53.86 and 47 percent, respectively) compared with non-saline conditions and lack of Azospirillum and nanoparticles application. Application of Azospirillum and nanoparticles increased the content of soluble sugar (18.68 percent) and catalase enzyme activity (28 percent) as compared with treatments that did not receive Azospirillum application and foliar spraying. Not applying Azospirillum and nanoparticles under 120 mM salinity increased dry matter remobilization from aerial organs (54.25 percent)­ and the contribution of dry matter remobilization from aerial organs (126.14 percent) compared with the application of Azospirillum and nanoparticles under non-saline conditions.
Conclusion: It seems that applying Azospirillum and nanoparticle foliar application can increase grain yield of triticale under salinity stress due to improved biochemical traits.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Catalase
  • Leaf area index
  • Proline
  • Zinc nano oxide

منابع

امیریوسفی، مهدی، تدین، محمودرضا و حسینی‌فرد، مرجان سادات (1401). تأثیر کودهای زیستی نیتروژنه و فسفره بر برخی صفات جوانه‌زنی بذر دو رقم کینوا تحت تنش شوری. مهندسی اکوسیستم بیابان، 8(24)، 79-94. doi: 10.22052/deej.2018.7.24.49
حاجی پور، هادی و جبارزاده، زهره (1396). واکنش های رشد و فتوسنتزی داوودی به محلول‌پاشی سیلیکات‌سدیم و کلسیم. مجله فرایند و کارکرد گیاهی، 6 (19)، 138-129.
حاجی­بلند، رقیه؛ چراغواره، لیلا و دشتبانی، فرشته (1395). اثر کاربرد سیلیکون بر گندم تحت تنش شوری. مجله فرایند و عملکرد گیاه، 5(18)، 1-12.
خیری‌زاده آروق، یونس؛ سید شریفی، رئوف و خلیل‌زاده، راضیه (1397). بررسی کاربرد کود بیولوژیک و نانواکسیدروی بر انتقال مجدد و شاخص سطح برگ تریتیکاله (X Triticosecale wittmack) در شرایط شوری خاک. مجله تنش‌های محیطی در علوم زراعی، 11(4)، 1004-993.
خیری‌زاده آروق، یونس؛ سید شریفی، رئوف؛ صدقی، محمد و برمکی، مرتضی (1394). اثر کودهای زیستی و نانواکسیدروی بر فرایند انتقال مجدد و برخی شاخص‌های رشد تریتیکاله در شرایط محدودیت آبی. مجله علمی پژوهشی فیزیولوژی گیاهان زراعی، 7(26)،37-55.
زارع، حمیدرضا؛ قنبرزاده، زهره؛ بهداد، آسیه و محسن­زاده، ساسان (1394). اثر سیلیکون و نانوسیلیکون در کاهش صدمات ناشی از تنش شوری بر گیاهچه ذرت. مجله زیست‌شناسی گیاهی ایران، 26(7)، 59-74.
زراوشان، محبوبه؛ عبدل­زاده، احمد؛ صادقی‌پور، حمیدرضا و مهربان جوبانی، پویان (1399). مقایسه اثر سیلیکون و نانوسیلیکون بر برخی از صفات بیوشیمیایی و فتوسنتزی در گیاه (Zea mays L.) تحت تنش شوری. فیزیولوژی محیطی گیاهی، 15(57)، 23-38.
سعادتمند، مهشید و انتشاری، شکوفه (1391). اثر طول زمان پیش‌تیمار با سیلیکون بر تحمل شوری در گیاه گاوزبان ایرانی (Echium amoenum Fish &C.A. mey). مجله علم و فنون کشت­های گلخانه‌ای، 3(4)، 45-57.
سعیدی ابواسحقی، روح الله؛ یدوی، علیرضا؛ موحدی دهنوی، محسن و بلوچی، حمیدرضا (1393). اثر دور آبیاری و محلول‌پاشی آهن و روی بر برخی خصوصیات فیزیولوژیک و مورفولوژیک لوبیا قرمز (Phaseolous vulgaris L.).  مجله فرایند و کارکرد گیاهی، 3(7)، 27-42.
سیدشریفی، رئوف و نظرلی، حمید (1392). تأثیر پرایمینگ بذر با باکتری‌های محرک رشد PGPR بر عملکرد دانه، کارایی مصرف کود و انتقال ماده مجدد ماده خشک آفتابگردان در سطوح مختلف کود نیتروژنه. مجله دانش کشاورزی و تولید پایدار، 3(23)، 27-45.
شربتخواری، ماهرخ؛ گالشی، سراله؛ سادات شبر، زهرا؛ سلطانی، افشین و ناخدا، بابک (1393). بررسی صفات فیزیولوژیکی مرتبط با انتقال مجدد ذخایر ساقه تحت شوری انتهلی فصل در گندم. مجله الکترونیک تولید گیاهان زراعی، 7(1)، 25- 44.
علیخانی، سجاده و محمودی زرندی، مهرناز (1398). اثر مایه‌زنی توأم با اندومیکوریز و باکتری‌های ریزوبیوم ملیلوتی و سودوموناس آئروژینوزا ملیلوتی بر گیاه یونجه (Medicago sativa) در شرایط تنش آبی. مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران)، 32(1)، 155-166.
فارسی، مرضیه؛ عبداللهی، فرزین؛ صالحی، امین و قاسمی، شیوا (1396). مطالعه خصوصیات فیزیولوژیک گیاه دارویی مرزنجوش یک ساله (Origanum majorana) در پاسخ به عنصر روی در شرایط تنش خشکی. تنش‌های محیطی در علوم زراعی، 10(4)، 559-570.
محمدی کله سرلو، سارا؛ سیدشریفی، رئوف؛ نریمانی، حامد و نظری، ژیلا (1402). تأثیر فلاوباکتریوم، ورمی‌کمپوست و هیومیک اسید بر فتوسنتز جاری، انتقال ماده خشک و سهم آن‌ها در عملکرد دانه تریتیکاله (Triticosecale wittma L.) تحت شرایط تنش شوری. فیزیولوژی محیطی گیاهی، 69(18)، 26-43.
موسی‌پور یحیی آبادی، حسن و اصغری پور، محمدرضا (1395). اثرات تنش خشکی و برهم‌کنش آن با سیلیکون بر تحریک سامانه آنتی‌اکسیدانی و میزان پراکسیداسیون لیپیدی در رازیانه (Foeniculum vulgar). فرایند و عملکرد گیاه، 5(16)، 71-84.
نریمانی، حامد و سید شریفی، رئوف (1397). تأثیر کاربرد خاک و محلول‌پاشی روی بر مؤلفه­های پرشدن دانه، عملکرد دانه و برخی از صفات بیوشیمیایی گندم تحت تنش شوری. سیزدهمین همایش ملی علوم و مهندسی آبخیزداری ایران و سومین همایش ملی صیانت از منابع طبیعی و محیط زیست. دانشگاه محقق اردبیلی، ایران.
نظری، ژیلا؛ سید شریفی، رئوف و نریمانی، حامد (1400). اثر کودهای زیستی، نانوسیلیکون و محدودیت آبی بر فتوسنتز جاری و انتقال ماده خشک تریتیکاله. مجله فیزیولوژی گیاهان زراعی، 13(51)، 24-5.
 
References
Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N., Wijaya, L., & Ali, S. )2019(. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean (Vigna radiata L.) through the modifications of physio-biochemica attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38, 70-82.
Ahmad, P., Ashraf, M., Azooz, M. M., Rasool, S., & Akram, N. A. )2013(. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. Journal of Plant Interactions, 9, 1-9.
Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Journal of Plant Nutrition and Soil Science, 24(12), 1337-1344.
Alikhani, S., & Mahmoudi Zarandi, M. (2019). Effect of coinoculation with endomycorrhiza, Pseudomonas aeroginosa and Rhizobium meliloti on Medicago sativa under water stress. Journal  of Plant Research (Iranian Journal of Biology), 32(1), 155-166. (In Persian).
Amiryousefi, M., Tadayon, M. R., & Hoseinifard, M. S. (2022). Effect of Nitrogen and Phosphorus Bio Fertilizers on Some Seed Germination Traits of Two Cultivars of Quinoa under Salinity Stress. Desert Ecosystem Engineering, 8(24), 79-94. doi: 10.22052/deej.2018.7.24.49. (In Persian).
Asghari, B., Khademian, R., & Sedaghati, B. (2020). Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae, 263, 109-132.
Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84-93.
Ashraf, M. A., Rasheed, R., Hussain, I., Iqbal, M., Haider, M. Z., Parveen, S., & Sajid, M. A. (2015). Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Archives of Agronomy and Soil Science, 61(4), 521-530. DOI:10.1080/03650340.2014.938644.
Bajji, M., Lutts, S., & Kinet, J. M. (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science, 160, 669-681.
Barnett, K. H., & Pearce, P. B. (1983). Source-Sink ratio alteration and its effect on physiological parameters in maize. Crop Science, 23, 101-109.
Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., & Ben Abdullah, F. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry, 58, 4216-4222.
Boorboori, M. R., EradatmandAsli, D., & Tehrani, M. (2012). The Effect of dose and different methods of iron, zinc, manganese and copper application on yield components, morphological traits and grain protein percentage of barley plant (Hordeum vulgare L.) in greenhouse conditions. Journal of Advances in Environmental Biology, 6(2), 740746.
Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cantale, C., Petrazzuolo, F., Correnti, A., Farneti, A., Felici, F., Latini, A., & Galeffi, P. (2016). Triticale for Bioenergy Production. Agriculture and Agricultural Science Procedia, 8, 609-616.
Chandran, H., Meena, M., & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13, 10986.
Ehdaei, B., Alloush, G. A., Madore M. A., & Waines, J. G. (2006). Genotype variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water soluble carbohydrates. Crop Science, 46(5), 2093-2103.
Farsi, M., Abdullahi, F., Salehi, A., & Ghasemi, S. (2017). Study of physiological characteristics of marjoram (Origanum majorana), as a medicinal plant in response to zinc levels under drought stress conditions. Environmental Stresses in Crop Sciences, 10(4), 559-570. (In Persian).
Ferreira, C. M., Soares, H. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science Total Environment, 682, 779-799.
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596. http://dx.doi.org/10.1155/2014/701596.
Haji-Bland, R., Chiragvareh, L., & Dashtbani, F. (2016). Effect of silicon supplementation on wheat plants under salt stress.Journal of Plant Process and Performance, 5(18), 1-12. (In Persian)
Hajipour, H., & Jabarzadeh, Z. (2018). Growth and photosynthetic responses of chrysanthemum to foliar application of sodium and calcium silicate. Journal of plant process and function, 6(19), 138-129. (In Persian).
Hamilton, E. W., & Heckathorn, S. A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex ii is protected by proline and betaine. Plant Physiology, 126, 1266-1274.
Hasanuzzaman, M., Oku, H., Nahar, K., Bhuyan, M. H., Mahmud, J. A., Balusk, F., & Fujita, M. (2018). Nitric oxide -induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Biotechnology Reports, 12, 77 -92.
Hmaeid, N., Wali, M., Mahmoud, O. M., Pueyo, J. J., Ghnaya, T., & Abdelly,C. (2018). Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology, 133, 104-113.
Hoffmann, J., Berni, R., Hausman, J. F., & Guerriero, G. (2020). A review on the beneficial role of silicon against salinity in non-accumulator crops tomato as a model. Biomolecules, 10, 1284.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences23(9), 5186.
Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., & Egbere, O. J. (2018). Biofertilizers as key player in enhancing soil fertility and crop productivity: (A Review). Direct Research Journal of Agriculture and Food Science, 6(3), 73-83.
Kao, W. Y., Tsai, T., Tsai, H., & Shih, C. N. (2006). Response of three glycine species to salt stress. Environmental and Experimental Botany, 56, 120-125.
Karimi, M. M., & Siddique, H. M. (1991). Crop growth and relative growth rates of old modern wheat cultivars. Australian Journal of Agricultural Research, 42, 13-20.
Khairizadeh Arouq, Y., Seyed Sharifi, R., & Khalilzadeh, R. (2018). Study of biofertilizers and nano zinc oxide application on remobilization and leaf area index of triticale (Triticosecale Witt.) under soil salinity. Journal of Environmental Stresses in Agricultural Sciences, 11(4), 1004-993. (In Persian).
Khairizadeh Arouq, Y., SeyedSharifi, R., Sedghi, M., & Barmaki, M. (2015). Effect of biofertilizers and nano zinc oxide on retransplantation process and some growth indicators of triticale under water limitation conditions. Scientific Research Journal of Crop Physiology, 7(26), 37-55. (In Persian).
Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J.  (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontier in Plant Science, 8, 510.516.
Lacerda, J. S., Martinez, H. E., Pedrosa, A. W., Clemente, J. M., Santos, R. H., Oliveira, G. L., & Jifon, J. L. (2018). Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sciences, 58, 1360-1370.
Liu, Q., Liu, R., Ma, Y., & Song, J. (2018). Physiological and molecular evidence for Na+ and Cl exclusion in the roots of two Suaeda salsa populations. Aquatic Botany, 146, 1-7.
Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S., & Foyer, C. H. (2004). Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany, 56, 417-423.
Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives. Frontiers in Plant Sciences, 8, 411-418.
Mabagala, F.S., Geng, Y., Cao, G., Wang, L., Wang, M., & Zhang, M. (2020). Silicon accumulation, partitioning and remobilization in spring maize (Zea mays L.) under silicon supply with straw return in Northeast China. Journal  of  Plant Nutrition44(10), 1498-1514.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7(9), 405-410.
Mohammadi Kale Sarlou, S., Seyed Sharifi, R., Narimani, H., & Nazari, Z. (2023). Effect of Flavobacterim, vermicompost and humic acid on current photosynthesis, dry matter remobilization and their contribution in grain yield of triticale under salinity stress conditions. Journal of Plant Environmental Physiology, 69(1), 26-43. (In Persian).
Mosapour Yahyaabadi, H., & Asgharipour, M. R. (2016). Effects of drought stress and its interaction with silicon on stimulates the antioxidant system and lipid peroxidation in Fennel (Foeniculum vulgar). Plant process and function, 5(16), 71-84.
Muchate, N. S., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D. (2019). NaCl induced salt adaptive changes and enhanced accumulation of 20 -hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea L. Scientific Reports, 9, 1-10.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681.
Narimani, H., & Seyed Sharifi, R. (2018, October). Effect of Soil application and Zinc Solubility on grain filling, grain yield and some biochemical traits of wheat under Salinity Stress. The 13th National Conference of Iran's Watershed Science and Engineering and the 3rd National Conference on Protection of Natural Resources and Environment. Mohaghegh Ardabili University, Iran. (In Persian).
Nazari, Zh., Seyed Sharifi, R., & Narimani, H. (2021). Effect of bio fertilizers, nano silicon and water limitation on current photosynthesis and dry matter transfer of Triticale. Crop Physiology Journal, 13(51), 5-24.(In Persian).
Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A., & Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnology Lettrer, 17(3), 7227-7236.
Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324-349.
Ranjan, R., Bohra, S. P., & Jeet, A. M. (2001). Book of Plant Senescence. New York: Jodhpur Agrobios.
Rasool, S., Ahmad,A. T., Siddiqi, O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35, 1039-1050.
Rohman, A., Riyanto, S., Yuniarti, N., Saputra, W. R., Utami, R., & Mulatsih, W. (2010). Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). International Food Research Journal, 17, 97-106.
Saadatmand, M., & Atahi, Sh. (2013). The effect of pretreatment time with silicon on salinity tolerance in Iranian borage (Echium amoenum Fish & C.A. mey). Journal of Science and Technology of Greenhouse Crops, 3(4), 45-57. (In Persian).
Saia, S., Ruisi, P., García-Garrido, J. M., Benítez, E., Amato, G., & Giambalvo, D. (2012). Can arbuscular mycorrhizal fungi enhance plant nitrogen capture from organic matter added to soil? 17th Nitrogen Workshop. Wexford, Ireland.
Said-Al Ahl, H. A. H., & Hussein M. S. (2010). Effect of drought stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean Journal of Applied Sciences, 3(1), 125-141.
Saidi Abu Eshaghi, R., Yadavi, A., Mohadi Dehnavi, M., & Balochi, H. (2014). Effect of irrigation intervals and foliar application of iron and zinc on some physiological and morphological characteristics of red bean (Phaseolous vulgaris L.). Journal of Plant Process and Function, 3(7), 27-42. (In Persian).
Seleiman, M., Aslam, F., Alhammad, M. T., Hassan, B. A., Maqbool, M. U., Chattha, R., Khan, M. U., Gitari, I., Uslu, O. S., Roy, R., & Battaglia, M. L. (2021). Salinity stress in wheat: effects, mechanisms and management strategies. Phyton-International Journal of Experimental Botany, 91(4), 667-694. https://doi.org/10.32604/phyton.2022.017365.
Seyed Sharifi, R., & Nazarli, H. (2012). Effects of Seed Priming with Plant Growth Promoting Rhizobacteria (PGPR) on Grain Yield, Fertilizer Use Efficiency and Dry Matter Remobilization of Sunflower (Helianthus annus L.) with Various Levels of Nitrogen Fertilizer. Journal of Agricultural Science and Sustainable Production, 3(23), 27-45. (In Persian).
Sharbatkhahari, M., Galshi, S., Sadat Shabbar, Z., Soltani A., & Nakhda, B. (2014). Study on agro-physiological traits related to stem reserve remobilization under terminal salinity in wheat. Electronic journal of crop production, 7(1), 25-44. (In Persian).
Song, C. Z., Liu, M. Y., Meng, J. F., Chi, M., Xi, Z. M., & Zhang, Z. W. (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv, Merlot growing on zinc deficient soil. Molecules, 20(2), 2536-2554.
Sudhakar, C, Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme ecacy in  two high yielding genotypes of mulberry (Morus alba L.) under NaCl Salinity, Plant Sciences161, 613-619.
Trejo-Téllez, L. I., García-Jiménez, A., Escobar-Sepúlveda, H. F., Ramírez-Olvera, S. M., Bello-Bello, J. J., & Gómez-Merino, F. C. (2020). Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. Peer Journal, 8(e9224), 1-28.
Yahyaabadi, H., & Asgharipour, M.R. (2016). Effects of drought stress and its interaction with silicon on stimulates the antioxidant system and lipid peroxidation in fennel (Foeniculum vulgar). Plant Process and Function, 5(16), 71-84. (In Persian).
Zaravshan, M., Abdulzadeh, A., Sadeghipour, H. R., & Mehraban Jobani, P. (2020). Comparing the effect of silicon and nanosilicon on some biochemical and photosynthetic traits in plants (Zea mays L.) under salt stress. Plant Environmental Physiology, 15(57), 23-38. (In Persian).
Zare, H.R., Qanbarzadeh, Z., Behdad, A., & Mohsenzadeh, S. (2016). Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays) seedlings .Iranian Journal of Plant Biology, 26(7), 59-74. (In Persian).