نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. رایانامه: h.oloumi@kgut.ac.ir

2 گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. رایانامه: alizamani65@gmail.com

3 گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. رایانامه: h.mozafari@kgut.ac.ir

4 گروه کشاورزی، دانشگاه فنی و حرفه‏ای، تهران، ایران. رایانامه: soudabeh.nourzad@srbiau.ac.ir

چکیده

هدف: پژوهش حاضر با هدف ارزیابی اثر تیمار ملاتونین در تحمل گیاه ریحان نسبت به بیش‏بود عناصر معدنی مس و روی انجام شد.
روش پژوهش: اثر تیمار ملاتونین (در دو سطح صفر و 100 میکرومولار) در تحمل گیاه ریحان نسبت به بیش‏بود عناصر معدنی مس (50 و 150 میکرومولار) و روی (50 و 100 میکرومولار) به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه‏ دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان در سال 1396 بررسی شد.
یافته­ ها: اثر سه‏گانه ملاتونین، روی، مس و اثر دوگانه ملاتونین و روی بر محتوای آب نسبی برگ، کلروفیل کل، کاروتنوئید، پروتئین، قند محلول و احیاشده، آنتوسیانین و فلاونوئید در سطح احتمال یک درصد معنی‏دار شد. شاخص‌های پایداری غشا و محتوای نسبی آب برگ در گیاه ریحان با کاربرد ملاتونین به‌صورت جداگانه و توام با فلزات مس و روی بهبود یافت و میزان قندهای احیا، کلروفیل و کاروتنوئید تحت تأثیر سمیت روی و مس کاهش یافتند.
نتیجه ­گیری: ملاتونین با بهبود ویژگی‌های فیزیولوژیکی به‌ویژه پایداری غشا و هم‌چنین ترکیبات فلاونوئیدی، آنتوسیانین و گلوتاتیون منجر به کاهش اثرات منفی ناشی از بیش‏بود مقادیر مس و روی به‌ویژه در غلظت 50 میکرومولار این دو فلز بر پارامترهای رشدی شد.

کلیدواژه‌ها

عنوان مقاله [English]

The Melatonin Effects on Biochemical Parameters and Antioxidant Defense System of the Basil Plant (Ocimum basilicum L.) under Copper and Zinc Toxicity

نویسندگان [English]

  • Hakimeh Oloumi 1
  • Ali Zamani 2
  • Hosein Mozaffari 3
  • Soudabeh Nourzad 4

1 Corresponding Author, Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: h.oloumi@kgut.ac.ir

2 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: alizamani65@gmail.com

3 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: h.mozafari@kgut.ac.ir

4 Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran. E-mail: soudabeh.nourzad@srbiau.ac.ir

چکیده [English]

Objective: The present research was conducted with the aim of evaluating the effect of melatonin treatment on the tolerance of basil plants to the excess of copper and zinc mineral elements.
Methods: The effect of melatonin treatment (at two levels of 0 and 100 micromolar) on the tolerance of basil plants to the excess of mineral elements copper (50 and 150 μM) and zinc (50 and 100 μM) as factorial layout based on a completely randomized design with 3 replications and at 2017 in greenhouse conditions at Graduate University of Advanced Technology, Kerman Done.
Results: The triple effect of melatonin and zinc and copper and the double effect of melatonin and zinc on the relative water content of leaves, total chlorophyll, carotenoid, protein, soluble and reduced sugar, anthocyanin and flavonoid were significant at 1% probability level. Membrane stability indices and relative water content of leaves were improved by applying melatonin in the basil plant separately and together with copper and zinc metals. The amount of reducing sugars, chlorophyll, and carotenoids decreased under the influence of zinc and copper toxicity.
Conclusion: melatonin by improving physiological characteristics, especially membrane stability, as well as flavonoid compounds, anthocyanin, and glutathione; It led to the reduction of the negative effects caused by excessive amounts of copper and zinc, especially at a concentration of 50 micromolar of these two metals on growth parameters.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Basil
  • Glutathione
  • Membrane stability index
زمانی بابگهری، علی؛ علومی، حکیمه؛ مظفری، حسین و آروین، محمد جواد (1397، بهمن). بهبود پاسخ‏های رشدی و فیزیولوژیکی گیاه ریحان سبز (Ocimum basilicum) بر تیماردهی هم‌زمان ملاتونین با مقادیر بیش‌بود فلزات روی و مس. ششمین کنگره ملی زیست‌شناسی و علوم طبیعی ایران. تهران، https://civilica.com/doc/848890
عسگری‏لجایر، حمایت؛ متشرع‏زاده، بابک؛ ثواقبی‏فیروزآبادی غلامرضا و هادیان، جواد (1394). تأثیر مس و روی بر ویژگی‏های رشدی، غلظت برخی عناصر معدنی و ظرفیت انتقال عناصر به دمکرده و جوشانده گیاه دارویی بالنگوی شهری (Lallemantia iberica F. & C.M) کشت شده در شرایط گلخانه‏ای. روابط خاک و گیاه (علوم و فنون کشت‏های گلخانه‏ای). 6(22)، 145-160.
 
References
Ali, M., Parveen, A., Malik, Z., Kamran, M., Saleem, M. H., & Abbasi, G. H. (2022). Zn alleviated salt toxicity in Solanum lycopersicum L. seedlings by reducing Na+ transfer, improving gas exchange, defense system and Zn contents. Plant Physiology Biochemistry, 186, 52-63.
Ansari, T., Ikram, N., Najam-ul-Haq, M., Fayyaz, I., Fayyaz, Q., Ghafoor, I., & Khalid, N. (2004). Essential trace metal (Zinc, Manganese, Copper and Iron) levels in plants of medicinal importance. Journal of Biological Sciences, 4, 95-99.
Arnao, M. B., & Hernandez-Ruiz, J. (2013). Growth conditions determine different melatonin levels in Lupinus albus L. Journal of Pineal Research, 55, 149-155.
Arnao, M. B., & Hernández-Ruiz, J. (2017). Melatonin and its relationship to plant hormones. Annals of Botany, 121, 195-207.
Asgari, H., Motesharezadeh, B., Savaghebi, G. R., & Hadiyan, J. (2015). Effect of copper and zinc on growth characteristics, concentration of some mineral elements and translocation capacities of elements into infusion and decoction of dragon’s head (Lallemantia iberica F. & C.M) under greenhouse conditions. Soil and Plant Interactions, 6(2), 145-161. (In Persian).
Balen, B., Tkalec, M., Rogić, T., Šimac, M., Štefanić, P. P., Rončević, S., & Svedružić, L. P. (2013). Effects of iso-osmotic NaCl and mannitol on growth, proline content, and antioxidant defense in Mammillaria gracilis Pfeiff. in vitro-grown cultures. In Vitro Cellular and Developmental Biology-Plant, 49, 421-432.
Barman, D., Ghimire, O., Chinnusamy, V., Kumar, R., & Arora, A. (2019). Amelioration of heat stress during reproductive stage in rice by melatonin. Indian Journal of Agricultural Sciences, 89, 1151-1156.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cao, Y. Y., Qi, C. D., Li, S., Wang, Z., Wang, X., Wang, J., Ren, S., Li, X., Zhang, N., & Guo, Y.D. (2019). Melatonin Alleviates Copper Toxicity via Improving Copper Sequestration and ROS Scavenging in Cucumber. Plant Cell Physiology, 60(3), 562-574.
Chen, Q., Qi, W-b., Reiter, R. J., Wei, W., & Wang, B. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166, 324-328.
Dawood, M., Moursi, Y., Amro, A., Baenziger, P., & Sallam, A. (2020). Investigation of Heat-Induced Changes in the Grain Yield and Grains Metabolites, with Molecular Insights on the Candidate Genes in Barley. Agronomy, 10, 1730.
Do˘gru, A. (2021). Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. Planta, 253, 1-15.
Fan, J., Xie, Y., Zhang, Z., & Chen, L. (2018). Melatonin: a multifunctional factor in plants. International Journal of Molecular Sciences, 19(5), 1528.
Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207-212.
Gu, Q., Xiao, Q., Chen, Z., & Han, Y. (2022). Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: An Update. International Journal of Molecular Sciences, 23, 5666.
Hacışevki, A., & Baba, B. (2018). An overview of melatonin as an antioxidant molecule: a biochemical approach. Melatonin. London: IntechOpen Limited.
Hafeez, B., Khanif, Y., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture, 3, 374.
Haji Boland, R., & Bonyadi, H. (2007). Absorption, utilization and recycling of two elements copper and manganese in toxic concentrations in three plants: rice, corn and sunflower. Tehran University Science Journal, 32, 11-20.
Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., & Ali, A. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biosyst. International Journal of Plant Biology, 155, 211-234.
Hassan, M. U., Ghareeb, R.Y., Nawaz, M., Mahmood, A., Shah, A. N., Abdel-Megeed, A., Abdelsalam, N. R., Hashem, M., Alamri, S., Thabit, M. A., & Qari, S. H. (2022). Melatonin: A Vital Pro-Tectant for Crops against Heat Stress: Mechanisms and Prospects. Agronomy, 12, 1116.
Hodzic, E., Galijasevic, S., Balaban, M., Rekanovic, S., Makic, H., Kukavica, B., & Mihajlovic, D. (2021). The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. Turkish Journal of Chemistry, 45(3), 737-748.
Hu, J., Shi, G., Xu, Q., Wang, X., Yuan, Q., & Du, K. (2007). Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russian Journal of Plant Physiology, 54, 414-419.
Imran, M., Khan, M. A., Shahzad, R., Bilal, S., Khan, M., Yun, B. W., Khan, A. L., & Lee, I. J. (2021). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules, 26, 5116.
Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., El-Yazied, A. A., Alabdallah, N. M., Hikal, M., Mohamed, M. H., Ibrahim, M. F., & Hasan M. M. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309-320.
Jayanthi, P., Senthilkumar, P., & Sivasankar, S. (2015). Interactive effects of copper and zinc accumulation in Portulaca olearceastem cuttings, through hydroponics. Advances in Applied Science Research, 6, 54-61.
John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2012). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 3, 65-76.
Ke, W., Xiong, Z. T., Chen, S., & Chen, J. (2007). Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field site. Environmental and Experimental Botany, 59, 59-67.
Lascano, H. R., Antonicelli, G. E., Luna, C. M., Melchiorre, M. N., Gómez, L. D., Racca, R. W., Trippi, V. S., & Casano, L. M. (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Functional Plant Biology, 28, 1095-1102.
Lin, Y. F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69, 3187-3206.
Murariu, M., Gradinaru, R. V., Mihai, M., Jurcoane, S., & Drochioiu, G. (2011). Unexpected effect of nickel complexes of some histidine-containing peptides on Escherichia coli. Romanian Biotechnological Letters, 16, 6242-6246.
Murch, S., KrishnaRaj, S., & Saxena, P. (2000). Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Reports, 19, 698-704.
Pirooz, P., Amooaghaie, R., Ahadi, A., & Sharififar, F. (2021). Silicon-induced nitric oxide burst modulates systemic defensive responses of Salvia officinalis under copper toxicity. Plant Physiology Biochemistry, 162, 752-761.
Posmyk, M. M., Kuran, H., Marciniak, K., & Janas, K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. Journal of pineal research, 45, 24-31.
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30, 105-111.
Ryan, B. M., Kirby, J. K., Degryse, F., Harris, H., McLaughlin, M. J., & Scheiderich, K. (2013). Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytologist, 199, 367-378.
Sairam, R.K., Rao, K.V., & Srivastava, G. (2002). Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163, 1037-1046.
Saljougi, S., & Ranjbar, M. (2018).  An investigating of the interaction of zinc and copper on the accumulation of elements, antioxidant enzymes, photosynthetic pigments and malon dialdehyde in basil (Ocimum basilicum). Plant process and function, 8(3), 339-357.
Sarafi, E., Tsouvaltzis, P., Chatzissavvidis, C., Siomos, A., & Therios, I. (2017). Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiology and Biochemistry, 112, 173-182.
Sestili, P., Ismail, T., Calcabrini, C., Guescini, M., Catanzaro, E., Turrini, E., Layla, A., Akhtar, S., & Fimognari, C. (2018). The potential effects of Ocimum basilicum on health: a review of pharmacological and toxicological stuies. Expert opinion on drug metabolism & toxicology, 7, 105-109.
Seyoum, A., Asres, K., & El-Fiky, F. K. (2006). Structure–radical scavenging activity relationships of flavonoids. Phytochemistry, 67, 2058-2070.
Sheng, K. S. (2007). Effect of copper on the photosynthesis and oxidative metabolism of Amaranthas tricolor seedling. Agricultural Sciences in China, 10, 1182-119.
Shi, H., Chen, K., Wei, Y., & He, C. (2016). Fundamental issues of melatonin-mediated stress signaling in plants. Frontiers in plant science, 7, 1124.
Somogyi, M. (1952). Determination of reducing sugars by Nelson-Somogyi method. Journal of Biological Chemistry, 2, 200, 245.
Szafrańska, K., Reiter, R. J., & Posmyk, M. M. (2016). Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Frontiers in plant science, 7, 1663-1678.
Tan, D. X., Manchester, L. C., Helton, P., & Reiter, R. J. (2007). Phytoremediative capacity of plants enriched with melatonin. Plant Signaling and Behavior, 2, 514-516.
Tang, Q., Li, C., Ge, Y., Li, X., Cheng, Y., Hou, J., & Li, J. (2020). Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes. Learning with Technologies, 127, 109431.
Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food research international, 38, 487-494.
Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64, 88-93.
Wang, P., Sun, X., Chang, C., Feng, F., Liang, D., Cheng, L., & Ma, F. (2013). Delay in leaf senescence of Malus hupehensis by long‐term melatonin application is associated with its regulation of metabolic status and protein degradation. Journal of pineal research, 55, 424-434.
Wang, P., Yin, L. H., Liang, D., Li, C., Ma, F. W., & Yue, Z. Y. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. Journal of Pineal Research, 53, 11-20.
Yadu, B., Chandrakar, V., Meena, R. K., Poddar, A., & Keshavkant, S. (2018). Spermidine and Melatonin Attenuate Fluoride Toxicity by Regulating Gene Expression of Antioxidants in Cajanus cajan L. Journal of Plant Growth Regulation, 37, 1113-1126.
Zamani Babgohari, A., Oloumi, H., Mozafari, H., & Arvin, M. J. (2017, February). Improvement of the growth and physiological responses of green basil plant (Ocimum basilicum) to the simultaneous treatment of melatonin with excess amounts of zinc and copper metals. 6th National Congress of Biology and Natural Sciences of Iran. Tehran. https://civilica.com/doc/848890. (In Persian).
Zeng, W., Mostafa, S., Lu, Z., & Jin, B. (2022). Melatonin-mediated abiotic stress tolerance in plants. Frontiers in plant science, 13, 847175.
Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2014). Roles of melatonin in abiotic stress resistance in plants. Journal of experimental botany, 66, 647-656.
Zhang, R., Yue, Z., Chen, X., Wang, Y., Zhou, Y., & Xu, W. (2021). Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Regulation, 97, 429-438.