نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: masoumeh.ganji_s96@gau.ac.ir

2 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: galeshi@gau.ac.ir

3 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران. رایانامه: h.jabbari@areeo.ac.ir

4 گروه زیست‌فرآورده‏های گیاهی، پژوهشکده زیست‌فناوری کشاورزی، پژوهشگاه ملی مهندسی ژنتیک و زیست‌فناوری، تهران، ایران. رایانامه: fsanjarian@nigeb.ac.ir

5 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. رایانامه: b.torabi@gau.ac.ir

چکیده

هدف: تنش آبی از مهم‌ترین عوامل محیطی مؤثر بر فرایندهای حیاتی و عملکرد گیاهان زراعی است. هدف مطالعه بررسی تأثیر تنش آبی بر صفات فیزیولوژیک و بیوشیمیایی ژنوتیپ‏های گلرنگ بود.
روش پژوهش: آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‏های کامل تصادفی در مزرعه تحقیقاتی مؤسسه تحقیقات اصلاح و تهیه نهال و بذر طی سال‏های 99-1397 اجرا شد. تیمارها شامل دو سطح آبیاری (40 و 80 درصد تخلیه آب در دسترس) و سه ژنوتیپ پرنیان، گلدشت و قزاقی بود. کاشت گیاه در ستون‏های خاک به ارتفاع 150 و قطر 23 سانتی‏متر و آبیاری با سیستم قطره‏ای انجام شد. فعالیت آنزیم‏های آنتی‏اکسیدانی، تجمع مالون‌دی‌آلدهید، پرولین، محتوای نسبی آب، کلروفیل، عملکرد دانه و ترکیب اسیدهای چرب در پایان آزمایش اندازه‏گیری شد.
یافته‏ ها: در اثر تنش آبی، افزایش تجمع پراکسید هیدروژن و مالون‌دی‌آلدهید میزان فعالیت آنزیم‏های کاتالاز و پراکسیداز را به‌ترتیب 1 و 5/2 واحد آنزیمی افزایش داد. محتوی پرولین در شرایط تنش آبی حدود 16 برابر افزایش داشت. در مقابل، محتوای نسبی آب برگ کاهش معنی‏داری نشان داد که سبب افزایش دمای کانوپی و کاهش 70 درصد عملکرد دانه شد. ژنوتیپ قزاقی کم‌ترین میزان افزایش دمای کانوپی در شرایط تنش را داشت و عملکرد پایدارتری نشان داد. به‌علاوه، تحت تنش آبی ترکیب اسیدهای چرب روغن دانه تغییر یافت و مقدار لینولئیک‌اسید در شرایط تنش آبی 8/1 درصد کاهش داشت.
نتیجه ‏گیری: نتایج نشان داد علاوه بر صفات فیزیولوژیک مرتبط با تنش، عدم افزایش نسبت اسیدهای چرب اشباع/غیراشباع نیز شاخص مهمی در شناسایی ژنوتیپ‏های برتر جهت توسعه کشت تحت شرایط کم‌آبی می‏باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Water Stress on Physiological and Biochemical Traits of Safflower Genotypes

نویسندگان [English]

  • Masomeh Ganji 1
  • Serolah Galeshi 2
  • Hamid Jabbari 3
  • Forough Sanjarian 4
  • Benjamin Torabi 5

1 Corresponding Author, Department of Agronomy, University Agricultural Sciences and Natural Resources, Gorgon, Iran. E-mail: masoumeh.ganji_s96@gau.ac.ir

2 Department of Agronomy, University Agricultural Sciences and Natural Resources, Gorgon, Iran. E-mail: galeshi@gau.ac.ir

3 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail: h.jabbari@areeo.ac.ir

4 Plant Bio-Product group, Agricultural Biotechnology Institute, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran. Iran. E-mail: fsanjarian@nigeb.ac.ir

5 Department of Agronomy, University Agricultural Sciences and Natural Resources, Gorgon, Iran. E-mail: b.torabi@gau.ac.ir

چکیده [English]

Objective: Water stress affects the crucial processes and yield of crops. This study aimed to investigate the effect of water stress on physiological and biochemical traits of safflower genotypes.
Methods: A factorial experiment was carried out as randomized complete block design in Seed and Plant Improvement Research Institute during 2017-19. The treatments included two irrigation levels (40 and 80% depletion of available water) and Parnian, Goldasht and Kazak genotypes. Plants were sown in soil columns with a height of 150 and a diameter of 23 cm, and irrigated by a drip system. Antioxidant enzymes, malondialdehyde, proline, relative water content, chlorophyll, seed yield and fatty acid composition were measured at the end.
Results: Water stress significantly increased the accumulation of hydrogen peroxide and malondialdehyde in safflower genotypes which led to increased catalase and peroxidase enzyme activity by 1 and 2.5 U, respectively. The proline content increased about 16 times under water stress conditions. In contrast, the relative water content showed a significant decrease, which resulted in increased canopy temperature and decreased seed yield by 70%. The Kazak genotype had the lowest increase in canopy temperature under stress conditions and showed higher yield stability. Moreover, the fatty acid composition of seed oil changed and the amount of linoleic acid decreased by 1.8% under water stress conditions.
Conclusion: The results showed that in addition to drought-related physiological traits, no increase in saturated/unsaturated fatty acid ratio is also an important indicator in screening superior genotypes for cultivation in water shortage.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Canopy temperature
  • Fatty acid
  • Linoleic acid
  • Relative water content
پاسبان اسلام، بهمن. (1390). تأثیر تنش خشکی بر عملکرد دانه و روغن ژنوتیپ‌های پاییزه گلرنگ. علوم گیاهان زراعی ایران، 42(2)، 275-283.
پاسبان اسلام، بهمن، صادقی بختوری، امیررضا، جباری، حمید، و بای بوردی، احمد. (1400). پاسخ فیزیولوژیک و زراعی ژنوتیپ‌های امیدبخش گلرنگ به تنش کمبود آب آخر فصل. علوم گیاهان زراعی ایران، 52(1)، 123-130.
خلیلی، معروف و نقوی، محمدرضا (1397). ارزیابی پاسخ فیزیولوژیکی و پروتئینی ارقام متحمل و حساس گندم بهاره به غلظت‌های مختلف تنش خشکی. فصلنامه علمی ژنتیک نوین، ۱۳(۱)، ۱۰۳-۱۱۸.
شیراسماعیلی، غلامحسین، مقصودی مود، علی اکبر، خواجویی نژاد، غلامرضا، و عبدالشاهی، روح اله. (1397). عملکرد و درصد روغن ارقام گلرنگ (Carthamus tinctorius L.) در کشت بهاره و تابستانه تحت تأثیر تنش خشکی. اکوفیزیولوژی گیاهان زراعی، 12(46), 237-252.
قدمی فیروز آبادی، علی، رایینی، محمود، شاه‌نظری، علی و زارع ابیانه، حمید (1393). تغییرات شاخص کلروفیل، شاخص سطح برگ و پارامترهای ریشه گیاه آفتابگردان در کم‌آبیاری تنظیم شده و کم‌آبیاری ناقص ریشه. نشریه فنآوری تولیدات گیاهی، 14(1)، 69-79.
یاری، پروانه، و کشتکار، امیرحسین (1395). همبستگی بین صفات و تجزیه علیت عملکرد دانه گلرنگ بهاره در شرایط تنش رطوبتی. پژوهش‏های زراعی ایران، 14(3)، 427-437.
 
References
Achhale, D. (2016). Screening of safflower (Carthamus tinctorius L.) Genotypes for drought tolerance. M.Sc. Thesis, Madhya Pradesh: Rajmata Vijayaraje Scindia Agricultural University.
Amini, H., Arzani, A., & Bahrami, F. (2013). Seed yield and some physiological traits of safflower as affected by water deficit stress. International Journal of Plant Production7(3), 597-614.
Bandeppa, S., Paul, S., Thakur, J. K., Chandrashekar, N., Umesh, D. K., Aggarwal, C., & Asha, A. D. (2019). Antioxidant, physiological and biochemical responses of drought susceptible and drought tolerant mustard (Brassica juncea L.) genotypes to rhizobacterial inoculation under water deficit stress. Plant Physiology and Biochemistry, 143, 19-28.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil39(1), 205-207.
Bellaloui, N., Mengistu, A., & Kassem, M. A. (2013). Effects of genetics and environment on fatty acid stability in soybean seed. Food and Nutrition Sciences, 4(9), 165-175.
Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., & Giuffrè, A. (2013). Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress. FEBS letters587(14), 2214-2218.
Bortolheiro, F. P., & Silva, M. A. (2017). Physiological response and productivity of safflower lines under water deficit and rehydration. Anais da Academia Brasileira de Ciências89, 3051-3066.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry72(1-2), 248-254.
Brock, J. R., Scott, T., Lee, A. Y., Mosyakin, S. L., & Olsen, K. M. (2020). Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biology, 20, 1-15.
Culha Erdal, Ş., Eyidoğan, F., & Ekmekçi, Y. (2021). Comparative physiological and proteomic analysis of cultivated and wild safflower response to drought stress and re-watering. Physiology and Molecular Biology of Plants, 27(2), 281-295.
De Vos, C. H. R., & Schat, H. (1991). Free radicals and heavy metal tolerance. In Ecological responses to environmental stresses. edited by Rozema, J., & Verkleij, J. A. C.. Dordrecht: Springer. 22-31.
Dhindsa, R. S., Plumb-Dhindsa, P. A. M. E. L. A., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany32(1), 93-101.
Ellouzi, H., Ben Hamed, K., Hernández, I., Cela, J., Müller, M., Magné, C., Abdelly, C., & Munné-Bosch, S. (2014). A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta240(6), 1299-1317. https://doi.org/10.1007/s00425-014-2154-7
Ghadami, A., Raeni, M., Shahnazari, A., & Zare abyane, H. (2014). Variation of Chlorophyll, Leaf Area Index and Root Parameters of Sunflower Under, Regulated Deficit and Partial Root Zone Drying Irrigation. Plant Production Technology 6(1), 69-79. (In Persian)
Ghassemi-Golezani, K., Bilasvar, H. M., & Nassab, A. D. M. (2019). Improving rapeseed (Brassica napus L.) plant performance by exogenous salicylic acid and putrescine under gradual water deficit. Acta physiologiae plantarum41(12), 1-8.
Hamedani, N. G., Gholamhoseini, M., Bazrafshan, F., Amiri, B., & Habibzadeh, F. (2020). Variability of root traits in sesame genotypes under different irrigation regimes. Rhizosphere13, 100190.
Harrathi, J., Hosni, K., Karray-Bouraoui, N., Attia, H., Marzouk, B., Magné, C., & Lachaâl, M. (2012). Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiologiae Plantarum34(1), 129-137.
Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for sustainable development36(1), 1-31.
Imtiaz, M., Tu, S., Xie, Z., Han, D., Ashraf, M., & Rizwan, M. S. (2015). Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant and Soil, 390, 17-27.
Jiang, Y., & Huang, B. (2001). Osmotic adjustment and root growth associated with drought preconditioning‐enhanced heat tolerance in Kentucky bluegrass. Crop Science41(4), 1168-1173.
Joshan, Y., Sani, B., Jabbari, H., Mozafari, H., & Moaveni, P. (2019). Effect of drought stress on oil content and fatty acids composition of some safflower genotypes. Plant, Soil and Environment65(11), 563-567.
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 56-92.
Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiology57(2), 315-319.
Karimizadeh, R., & Mohammadi, M. (2011). Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science5(2), 138-146.
Kavi Kishor, P. B., Hima Kumari, P., Sunita, M. S. L., & Sreenivasulu, N. (2015). Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in Plant Science6, 544.
Khalatbari, A., Shirani Rad, A., Valadabady, S. A., Sayfzadeh, S., & Zakerin, H. (2022). Yield Components and Fatty Acids Variation of Canola Cultivars under Different Irrigation Regimes and Planting Dates. Gesunde Pflanzen74(1), 17-27.
Khalili, M., & Naghavi, M, (2018). Evaluation of physiological and protein response of tolerant and susceptible wheat cultivars to different concentration of drought stresses. Modern Genetic Journal, 13(1), 103-118. (In Persian)
Kreps, F., Kyselka, J., Burčová, Z., Schmidt, Š., Rajchl, A., Filip, V., Ház, A., Jablonský, M., Sládková, A., & Šurina, I. (2017). Influence of deodorization temperature on formation of tocopherol esters and fatty acids polymers in vegetable oil. European Journal of Lipid Science and Technology, 119(3), 1600027. https://doi.org/10.1002/ejlt.201600027
Lambert, A. J., & Brand, M. D. (2009). Reactive oxygen species production by mitochondria. Methods in molecular biology554, 165-181. https://doi.org/10.1007/978-1-59745-521-3_11
Leach, K. A., Hejlek, L. G., Hearne, L. B., Nguyen, H. T., Sharp, R. E., & Davis, G. L. (2011). Primary root elongation rate and abscisic acid levels of maize in response to water stress. Crop Science51(1), 157-172.
Nasirzadeh, L., Sorkhilaleloo, B., Majidi Hervan, E., & Fatehi, F. (2021). Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 49, 83-89.
Nazari, M., Mirlohi, A., & Majidi, M. M. (2017). Effects of drought stress on oil characteristics of Carthamus species. Journal of the American Oil Chemists' Society94(2), 247-256.
Pasban Eslam, B. (2011a). Drought Stress Effects on Productivity of Fall Safflower Genotypes. Iranian Journal of Field Crop Science42(2), 275-283. (In Persian)
Pasban Eslam, B. (2011b). Evaluation of physiological indices for improving water deficit tolerance in spring safflower. Journal of Agriculture Science and Technology, 13, 327-338.
Pasban Eslam, B., Sadeghi Bakhtevari, A. R., Jabbari, H., & Bybordi, A. (2021). Physiological and agronomic response of promise safflower genotypes to late season water deficit stress. Iranian Journal of Field Crop Science52(1), 123-130. (In Persian)
Polania, J., Rao, I. M., Cajiao, C., Grajales, M., Rivera, M., Velasquez, F., Raatz, B., & Beebe, S. E. (2017). Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23-24 × SEA 5 of Common Bean. Frontiers in Plant Science8, 246466. 
Rahmani, F., Sayfzadeh, S., Jabbari, H., Valadabadi, S. A., & Hadidi Masouleh, E. (2019). Alleviation of drought stress effects on safflower yield by foliar application of zinc. International Journal of Plant Production13(4), 297-308.
Reiahisamani, N., Esmaeili, M., Khoshkholgh Sima, N. A., Zaefarian, F., & Zeinalabedini, M. (2018). Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils. Genetic Resources and Crop Evolution65(7), 1879-1891.
Spasibionek, S., Mikołajczyk, K., Ćwiek-Kupczyńska, H., Piętka, T., Krótka, K., Matuszczak, M., Nowakowska, J., Michalski, K., & Bartkowiak-Broda, I. (2020). Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PloS one15(6), e0233959. https://doi.org/10.1371/journal.pone.0233959
Shakeel, A. A., Xiao-yu, X., Long-chang, W., Muhammad, F. S., Chen, M., & Wang, L. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African journal of agricultural research6(9), 2026-2032.
Shir esmaeili, G. H., Maghsudi mood, A. A., Khajueinejad, G. R., & Abdoshahi, R. (2018). Yield and Oil Percentage of Safflower Cultivars (Carthamus tinctorius L.) in Spring and Summer Planting Seasons Affected by Drought Stress. Journal of Crop Ecophysiology12(46(2)), 237-252. (In Persian)
Suriya-arunroj, D., Supapoj, N., Toojinda, T., & Vanavichit, A. (2004). Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress. Science Asia30, 411-415.
Udawat, P., Jha, R. K., Mishra, A., & Jha, B. (2017). Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco. Frontiers in Plant Science8, 230803. https://doi.org/10.3389/fpls.2017.00582
Yari, P. & Keshtkar, A. H. (2015). Correlation between Traits and Path Analysis of Safflower Grain Yield under Water Stress Conditions. Iranian Journal of Field Crops Research, 14(3), 427-437. (In Persian)
Yeloojeh, K. A., Saeidi, G., & Sabzalian, M. R. (2020). Drought stress improves the composition of secondary metabolites in safflower flower at the expense of reduction in seed yield and oil content. Industrial Crops and Products, 154, 112496.