تأثیر محرک رشد آلی بر عملکرد، اجزای عملکرد، درصد روغن و برخی شاخص های فیزیولوژیکی کلزا تحت شرایط تنش خشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 استادیار، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

این پژوهش به منظور بررسی تأثیر محرک رشد آلی بر رشد و عملکرد کلزا (Brassica napus L.) رقم دلگان تحت شرایط تنش خشکی طی سال-زراعی 97-1396 در مزرعه تحقیقاتی چاه نیمه دانشگاه زابل، بصورت کرت‌های خرد شده بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار به اجرا در آمد. تیمارهای آزمایش شامل سطوح قطع آبیاری بر اساس مراحل فنولوژیک رشد (سیستم کدبندی سیلوستر-برادلی) در سه سطح شاهد (آبیاری کامل)، قطع آبیاری از مرحله رشدی کد20/2 (20 میانگره مشخص میشود) و آبیاری تا مرحله رشدی کد9/5 (تمام خورجین‌ها بیشتر از 2 سانتی‌متر طول دارند) و عامل فرعی شامل چهار تیمار کودی: شاهد (محلول‌پاشی آب خالص)، هامون گرین 1 در 10 لیتر + کلسیم، هامون گرین 1 در 20 لیتر + کلسیم و هامون گرین 1 در 30 لیتر + کلسیم بود. نتایج اثرات ساده نشان داد که قطع آبیاری از مرحله رشدی کد20/2 باعث کاهش معنی‌دار ارتفاع بوته، قطر ساقه، تعداد خورجین در بوته، تعداد دانه در خورجین، وزن هزار دانه، عملکرد دانه، عملکرد بیولوژیک و درصد روغن شد و از طرفی تیمار محلول‌پاشی 1 لیتر در 10 لیتر باعث افزایش صفات فوق بجز درصد روغن گردید. اما نتایج اثرات متقابل نشان داد که بالاترین مقدار کلروفیل a، b، کل، کارتنوئید، محتوی سلنیوم و کلسیم دانه از I1F2 و بیشترین مقدار پرولین از تیمار I3F2 به‌دست آمد. به‌طور کلی می‌توان گفت محلول‌پاشی محرک رشد آلی باعث تعدیل اثرات منفی تنش خشکی در گیاه کلزا شد و به میزان 91/27 درصد باعث بهبود عملکرد دانه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Organic Growth Stimulator on Yield, Yield components, Oil Percentage and Some Physiological Indices of Canola Under ِِDrought Stress Conditions

نویسندگان [English]

  • Mahdi Motakefi 1
  • Ahmad Ghanbari 2
  • Seyyed Mohsen MoussAvi Nik 2
  • Alireza Sirousmehr 3
1 Former M.Sc. Student, Department of Agronomy, Faculty of Agriculture, Zabol University, Zabol, Iran
2 Professor, Department of Agronomy, Faculty of Agriculture, Zabol University, Zabol, Iran.
3 Assistant Professor, Department of Agronomy, Faculty of Agriculture, Zabol University, Zabol, Iran
چکیده [English]

This study was conducted to investigate the effect of organic growth Stimulator on growth and yield of rapeseed (Dalgan cultivar) under drought in university of Zabol (Chahnime) during 2017as split plot design based on RCBD with three replications. The treatments consisted of irrigation cut off levels based on the phenological growth stages (Sylvester-Bradley encoding system): I1 = control (complete irrigation), I2 = irrigation up to stage the growth rate code is 2.20 (twenty internally identified) and I3 = irrigation to stage the growth rate code is 5.9 (all pods are more than 2 cm long) and subsidiary factor consists of four levels of fertilizer : F1 = control (pure water solution), F2 = Hamoon Green 1 liter at 10 liter + calcium, F3 = Hamoon Green 1 L at 20 liter + calcium, F4 = Hamoon Green 1 liter at 30 liter + Calcium. The results showed that I2 caused a significant decrease in plant height, stem diameter, number of pods, number of seeds per pod, 1000 seed weight, grain and biological yield and oil percentage, and also F2 increased the above traits except the percentage of oil. Interaction effects showed that the highest amount of chlorophyll a, b, total, carotenoid, selenium and calcium content of grain obtained from I1F2. The highest amount of proline in I2F2 observed. The highest of these traits was obtained from F2. Generally, spraying of the organic growth stimulator can be moderates the harmful effects of drought stress in rapeseed and 27% improved seed yield.

کلیدواژه‌ها [English]

  • Canola
  • Drought stress
  • Grain yield
  • Organic growth stimulator
  • Prolin

Alyari, H., Shekari, F. & Shekari, F. (2001). Oil Seed (Agronomy and Physiology). Amidi Publication. Tabriz. pp 182. (in Persian)

Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23(1), 112-121.

Ashraf, M. & Foolad, M. R. (2007). Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Bajji, M., Lutts, S. & Kient, J .M. (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum) cultivars performing differently in arid conditions. Plant Science, 160(4), 669-681.

Bates, L.S., Waldren, R.P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.

Bhardwaj, J. & Yadav, S. K. (2012). Comparative study on biochemical parameters and antioxidant enzymes in drought tolerant and a sensitive variety of Horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology, 7(1), 17-29. DOI: 10.3923/ajpp.2012.17.29.

Çakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89(1), 1-16. https://doi.org/10.1016/j.fcr.2004.01.005.

Cheraghi, A. M., Sajedi, N. A. & Gomarian, M. (2013). Effect of foliar application of salicylic acid and selenium on agronomic, physiological and qualitative characteristics of chickpea in rain fed conditions. Iranian Journal of Bean Research, 5(2), 31-42. (in Persian)

Din, J., Khan, S.U., Ali, I. & Gurmani, A.R. (2011). Physiological and Agronomic Response of Canola Varieties to Drought Stress. The Journal of Animal and Plant Sciences, 21(1), 78-82.

Djanaguiraman, M., Devi, D.D., Shanker, A.K., Sheeba, J. A. & Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272(1), 77-86.

Dziubinskaa H., Filekb M., Krol E., & Trebacz K. (2010). Cadmium and selenium modulate slow vacuolar channels in rape (Brassica napus L.) vacuoles. Journal of Plant Physiology, 167(18), 1566-1570. DOI: 10.1016/j.jplph.2010.06.016.

Farokhi nia, M., Roshdi, M., Pasban Eslam, B. & Sasan Doust, R. (2010). Effect of Drought Stress on Grain Yield and Some Vegetative Traits of Spring Safflower. Journal of Crop Research, 2(5), 1-11. (in Persian)

Girija, C., Smit, B. N. & Swamy, P. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis Hypogaea L.). Environ. Exp. Bot, 47(1), 1-10. DOI: 10.1016/S0098-8472(01)00096-X

Han-Wens, S., Jing, H., Shu-Xuan, L. & Wei-Jun, K. (2010). Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis, 41(10), 1195-1204. https://doi.org/10.1080/00103621003721395

Hartikainen, H., Xue, T. & Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225(1-2), 193-200.

Hassan-Zade, M., Naderi Darbaghshahi, M.R. & Shirani Rad, A.H. (2005). Evaluation of drought stress effects on yield and yield components of autumn rapeseed varieties in Isfahan region. Iranian Journal of Research in Agriculture, 2(2), 51- 62. (in Persian)

Heijari, J., Kivimäenpää, M., Hartikainen, H., Julkunen-Tiitto, R. & Wulff, A. (2006). Responses of strawberry to supplemental UV-B radiation and selenium under field conditions. Plant and Soil, 282(1-2), 27-39.

Hu, Q., Xu, J. & Pang, G. (2003). Effect of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural and Food Chemistry, 51(11), 3379-3381. https://doi.org/10.1021/jf0341417

Jabbari, H., Akbari, A., Khosh kholgh Sima, N. A., Alahdadi, I., Shirani Rad, A. H., Tabatabaee, S. A. & Hamed, A. (2014). Comparison of antioxidant enzymes and proline roles in drought tolerance of rapeseed (Brassica napus L.). Journal of Oil Plant, 1(1), 15-31. (in Persian)

Jones, H.G. & Tardieu, F. (1998). Modeling water relations of horticultural crops: a review. Scientia Horticulture, 74(1-2), 21-46.

Kuznetsov, V.V., Kholodova,V.P., Kuznetsov, V.L.V. & Yagodin, B.A. (2003). Selenium regulates the water status of plants exposed to drought. Doklady Biological Sciences. 390(1), 266-268. DOI: 10.1023/a:1024426104894 The Digital Object Identifier

Madanipour, E., Asilan, K. S. & Mansourifar, S. (2017). The effect of hexaconazole, penconazole and calcium silicate on the quantitative and qualitative traits of two varieties of soybean under water deficit conditions. Iranian Crop Sciences, 48(2), 377-388. (in Persian)

Mahaveer B.M. & Jaldappa, S. (2000). Spectrophotometric Determination of Selenium (IV) Using Methdilazine Hydrochloride. Turkish Journal of Chemistry, 24(3), 287-290.

Moradshahi, A., Salehi Eskandari, B. & Kholdebarin, B. (2004). Some physiological responses of canola (Brassica napus L.) to water deficit stress under laboratory conditions. Iranian Journal of Science and Technology. Transaction A, 28(A1), 43-50. (in Persian)

Nematollahi, E., Jafari, A. & Bagheri, A. (2013). Effect of drought stress and salicylic acid on photosynthesis pigments and macronutrients absorption in two sunflower (Helianthus annuus L.) cultivars. Journal of Plant Ecophysiology, 5(12), 37-51. (in Persian)

Oliviera-Neto, C.F., Silva-Lobato, A.K., Goncalves-Vidigal, M.C., Costa, R.C.L., Santos Filho, B.G., Alves, G.A.R., Silva-Maia, W.J.M., Cruz, F.J.R., Neres, H.K.B. & Santos Lopes, M.J. (2009). Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Science and Technology, 7(3&4), 588-593.

Prokopov, T.S. (1973). Spectrophotometric determination of calcium. Microchimica Acta61(3), 429-434.

Rogers, G. S. (2007). Development of a crop management program to improve the sugar-content and quality of rockmelons. Horticultural Australia, Sydney, Australia.

Rontein, D., Basse, T. G. & Hasont, A. D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 4(1), 49-56. DOI: 10.1006/mben.2001.0208

Sadaqat, H.A., Tahir, M.H.N. & Hussain, M.T. (2003). Physiogenetic Aspects of Drought Tolerance in Canola (Brassica  napus L). International Journal of Agriculture and Biology, 5(4), 611-614.

Sadras, V.O., Connor, D.J. & Whitfield, D.M. (1993). Yield, yield components and source-sink relationships in water-stressed sunflower. Filed Crops Research, 31(1-2), 27-39. https://doi.org/10.1016/0378-4290(93)90048-R

Sajedi, N. A., Madani, H. & Sajedi, A. (2016). Effect of water priming and different amounts of selenium on germination characteristics, seedling growth and seed yield of rainfed wheat under laboratory and field conditions. Iranian Journal of Seed Science and Technology, 5(1), 1-14. (in Persian)

Sarker, B.C., Hara, M. & Uemura, M. (2005). Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Science Horticulture, 103(4), 387-402.

Schweizer, U., Bräuer, A., U., Köhrle, J., Nitsch, R. & Savaskan, N.E. (2004). Selenium and brain function: a poorly recognized liaison. Brain Research Reviews, 45(3), 164-178.

Seppänen, M., Turakainen, M. & Hartikainen, H. (2003). Selenium effects on oxidative stress in potato. Plant Science, 165(2), 311-319. DOI: 10.1016/S0168-9452(03)00085-2

Seyed Ahmadi, A., Bakhshandeh, A. & Gharineh M. H. (2015). Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz. Iranian Journal of Field Crops Research, 13(1), 71-80. (in Persian)

Soxhlet, F. (1879). Die gewichtsaiialytische Bestimmung des Milchfettes; von.

Sylvester-Bradley, P.C. (1951). The subspecies in palaeontology. Geological Magazine, 88(2), 88-102.

Tailin, X., Hartikainen, H. & Piironen. V. (2001). Antioxidative and growth-promoting effect of selenium on senescing Lettuce. Plant and Soil, 237(1), 55-61.

Tapiero, H., Townsend, D. & Tew, K. (2003). The antioxidant role of selenium and seleno-compounds. Biomedicine and Pharmacotherapy, 57(3), 134-144. DOI: 10.1016/s0753-3322(03)00035-0

Verbruggen, N. & Hermans, C. (2008). Proline accumulation implants: A review. Amino Acids, 35(4), 753-759.

Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. DOI: 10.1007/s00425-003-1105-5

Xiao, X., Xu X. & Yang, F. (2008). Adaptive  responses to progressive drought stress in two Populus cothayana populations. Silva Fennica, 42(5), 705-719.

Xu, J., Yang, F., Chen, L., Hu, Y. & Hu, Q. (2003). Effect of selenium on increasing the antioxidant activity of tea leaves harvested during the early spring tea producing season. Journal of Agricultural and Food Chemistry, 51(4), 1081-1084.

Xue, T., Hartikainen, H. & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237(1), 55-61.

Yousefvand, P., Sajedi, N. A. & Mirzakhani, M. (2011). Effect of drought stress, zeolite and selenium intake on yield and yield components of sunflower. New Agricultural Findings, 5(3), 325-339. (in Persian)

Zali, H., Hasanloo, T., Sofalian, O., Asghari, A. & Zeinalabedini, M. (2016). Appropriate Strategies for Selection of Drought Tolerant Genotypes in Canola. Journal of Crop Breeding, 8(20), 77-90. (in Persian)

Zirgoli, M.H. & Kahrizi, D. (2015). Effects of end-season drought stress on yield and yield components of rapeseed (Brassica napus L.) in warm regions of Kermanshah Province. Biharean Biologist9(2), 133-140