تأثیر کاربرد اسید آمینه و روی بر جذب و انتقال روی و آهن در کلزا در شرایط کشت محلول

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 استاد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

4 استادیار، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، ترویج و آموزش کشاورزی، کرج، ایران

چکیده

بررسی نقش اسیدهای‌آمینه در جذب و انتقال عناصر کم‌مصرف برای بهبود مدیریت تغذیه گیاه ازاهمیت ویژه‌ای برخورداراست. در این آزمایش کشت محلول، اثرکاربرد 100 میکرومولار تریپتوفان، آرجنین و هیستیدین برجذب و انتقال روی و آهن درکلزا درسه سطح صفر، 5 و 10 میکرومولار روی از منبع سولفات‌روی بررسی‌شد. نتایج نشان داد در غلظت 5 میکرومولار روی، حضور اسید آمینه آرجنین و تریپتوفان سبب کاهش معنی‌دار وزن خشک شاخساره در مقایسه با شاهد شد در حالی که کاربرد هیستیدین منجر به افزایش معنی‌دار وزن خشک شاخساره گیاه در این سطح از روی شد. بالاترین مقدار جذب روی توسط شاخساره کلزا در سطح 10 میکرومولار روی در حضور اسید آمینه هیستیدین بدست آمد. کاربرد 10 میکرومولار روی تنها در حضور آرجنین سبب افزایش معنی‌دار جذب روی ریشه در مقایسه با تیمار بدون اسید آمینه شد. افزایش غلظت روی به 10 میکرومولار در حضور اسیدهای آمینه، به‌جز اسیدآمینه آرجنین، سبب کاهش جذب آهن شاخساره و ریشه کلزا شد. بالاترین غلظت اسید آمینه کل در شاخساره و ریشه مربوط به تیمار بدون روی و بدون اسید آمینه بود. صرفنظر از نوع اسید آمینه مصرفی، افزایش سطح روی تا 10 میکرومولار سبب افزایش فعالیت آنزیم کاتالاز و آسکوربات پروکسیداز برگ شد. براساس نتایج پژوهش حاضر، حضور اسیدهای آمینه تأثیر معنی‌داری بر جذب و انتقال روی و آهن در کلزا داشت و این تأثیر بسته به نوع اسید آمینه متفاوت بود. در بین اسیدهای آمینه، کاربرد اسیدآمینه هیستیدین باعث بیشترین افزایش جذب روی و عملکرد ماده خشک شاخساره و ریشه کلزا گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Amino Acid and Zinc Application on Uptake and Transport of Zinc and Iron in Rapeseed in Nutrient Solution Culture

نویسندگان [English]

  • Mohammad Hadi Mirzapour 1
  • Ahmad Golchin 2
  • Amir Hosein Khoshgoftarmanesh 3
  • Mohammad Medi Tehrani 4
1 Ph.D. Candidate, Engereening Soil Science Department, Agriculture Faculty, Zanjan University, Zanjan, Iran.
2 Professor, Engereening Soil Science Department, Agriculture Faculty, Zanjan University, Zanjan, Iran
3 Professor, Department of Soil Science, Agriculture Faculty, Isfahan University of Technology, Isfahan, Iran
4 Assistant Professor, Soil and Water Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

The role of amino acids on root uptake and root-to-shoot translocation of micronutrients is of great importance to improve plant nutrition management. In this nutrient solution culture experiment, the effect of application of 100μM tryptophan, arginine and histidine on the uptake and root-to-shoot translocation of zinc (Zn) and iron (Fe) in rapeseed with three Zn levels (0, 5 and 10μM as zinc sulfate) was investigated. The results showed at the 5μMZn, application of arginine and tryptophan significantly reduced the shoot dry weight compared to the amino acid-free, while at the 5μMZn, the use of histidine resulted in a significant increase in the plant shoot dry weight. The highest plant shoot Zn uptake was found at the 10μMZn plus histidine. Application of 10μMZn in the presence of arginine led to a significant increase of root Zn uptake as compared to the amino acid-free while no such effect was found in the presence of other amino acids. In the presence of amino acids, except arginine, increasing Zn concentration in the nutrient solution to 10μM resulted in lower shoot and root Fe uptake in comparison with amino acid-free. In contrast, at 10μMZn treatment, application of arginine enhanced plant shoot and root Fe uptake. The highest concentration of total amino acids in the plant shoots and roots was related to the free-Zn and free-amino acid treatment. Regardless of the type of amino acid used, the increase in Zn level up to 10μM increased the leaf activity of the catalase and ascorbate peroxidase.

کلیدواژه‌ها [English]

  • Amino acid
  • Ascorbate peroxidase
  • Catalase
  • Iron
  • Shoot yield

Abd El-Monem, A.A. (2007). Polyamines as modulators of wheat growth, metabolism and reproductive development under high temperature stress. Ph.D. thesis, Ain Shams University, Cairo, Egypt.

Azevedo, H., Aniorim-Silva, V. & Tavares, R. M. (2009). Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science, 66(2), 211-211.

Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. doi: 10.1104/pp.98.4.1222

Cakmak, I., Yilmaz, A. & Kalayci, M. (1996). Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 180, 165-172.

Cakmak, I., Öztürk, L. Eker, S., Torun, B., Kalfa, H.I. & Yilmaz, A. (1997). Concentration of zinc and activity of copper/zinc superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency. Journal of Plant Physiology, 151, 91-95. doi:10.1016/S0176-1617(97)80042-9

Cakmak, I., Erenoglu, B., Gülüt, K. Y., Derici, R. & Römheld, V. (1998). Light-mediated release of phytosiderophores in wheat and barley under iron or zinc deficiency. Plant and Soil, 202(2), 309-315.

Cakmak, I. & Engels, C. (1999). Role mineral nutrients in Photosynthesis and yield formation. In: Rengle, Z. (Ed.) Mineral nutrition of crops. Haworth Press, New York, pp.141-168.

Cakmak, I., Kalacyi, M., Ekiz, H., Braun, H. J., Kilinc, Y. & Yilmaz, A. (1999). Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60, 175-188. doi:10.1016/S0378-4290(98)00139-7

Callahan, D.L., Baker, A.J.M., Kolev, S.D. & Wedd, A.G. (2006). Metal ion ligands in hyper-accumulating plants. Journal of Biological Inorganic Chemistry, 11, 2-12. doi:10.1007/s00775-005-0056-7

Canny, M. J. (1995). Apoplastic water and solute movement: new roles for an old space. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 215-36. doi:10.1146/annurev.pp.46.060195.001243

Dalir, N. & Khoshgoftarmanesh, A. H. (2015). Root uptake and translocation of nickel in wheat as affected by histidine. Journal of Plant Physiology, 184, 8-14. doi:10.1016/j.jplph.2015.05.017

Fageria, N. K. & Stone, L. F. (2006). Physical, chemical and biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition, 29, 1327-56. doi:10.1080/01904160600767682

Fischer, W. N., Loo, D. D., Ludewig, U., Boorer, K. J., Tegeder, M., Rentsch, D., Wrightm E. M. & Frommer, W.B. (2002). Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. The Plant Journal, 29, 717-731. doi:10.1046/j.1365-313X.2002.01248.x

Ghasemi, S., Khoshgoftarmanesh, A. H., Afyuni, M. & Hadadzadeh, H. (2013). Zinc-amino acid complexes are more stable than free amino acids in saline and washed soils. Soil Biology and Biochemistry, 63, 73-79. doi:10.1016/j.soilbio.2013.03.025

Gramlich, A., Tandy, S., Frossard, E., Eikenberg, J. & Schulin, R. (2013). Availability of Zinc and the Ligands Citrate and Histidine to Wheat: Does Uptake of Entire Complexes Play a Role? Journal of Agriculture and Food Chemistry, 61, 10409-10417. doi:10.1021/jf401117d

Hacisalihoglu, G., Hart, J. J., Wang, J. Y. H., Cakmak, I. & Kochian, L. V. (2003). Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, 131, 595-602. doi:10.1104/pp.011825

Jones, D. L. & Hodge, A. (1999). Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology and Biochemistry, 31, 1331-1342. doi:10.1016/S0038-0717(99)00056-5

Jones, D.L., Hodge, A. & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhi-zodeposition. New Phytologist, 163, 459-480. doi:10.1111/j.1469-8137.2004.01130.x

Koksal, A. L., Dumanoglu, H., Gunes, N. T. & Aktas, M. (1999). The effects of different amino acid chelate foliar fertilizers on yield, fruit quality, shoot growth and Fe, Zn, Cu, Mn content of leaves in Williams’s pear cultivar (Pyrus communis L.). Turkish Journal of Agriculture and Forest, 23, 651-658.

Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. & Smith, J. A.C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635-638. doi.:10.1038/379635a0

Kutman, U. B., Yildis, B., Ozturk, L. & Cakmak, I. (2010). Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 87, 1-9. doi:10.1094/CCHEM-87-1-0001

Liao, M., Hedley, M., Woolley, D., Brooks, R. & Nichols, M. (2000). Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant and Soil, 223, 245-254. doi: 10.1023/ A: 1004843505053

Lopez-Millan, A. F., Ellis, D. R. & Grusak, M. A. (2005). Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula L. wild type and raze mutant plants. Plant Science, 168, 1015-1022. doi:10.1016/j.plantsci.2004.11.018

Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, London. England.

Maurel, C. & Chrispeels, M. J. (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiology, 125, 135-138. doi:10.1104/pp.125.1.135

Meychik, N.R. & Yermakov, I.P. (2001). Ion exchange properties of plant root cell walls. Plant and Soil, 234, 181-193. doi:10.1023/A:1017936318435

Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. doi:10.1093/oxfordjournals.pcp.a076232

Nasholm, T., Kielland, K. & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New Phytologist, 182, 31-48. doi:10.1111/j.1469-8137.2008.02751.x

Nowack, B., Schulin, R. & Robinson, B. H. (2006). A critical assessment of chelant-enhanced metal Phyto­extraction. Environmental Science & Technology, 40, 5225-5232. doi:10.1021/es0604919

Ohki, K. (1976). Effect of Zinc Nutrition on Photosynthesis and Carbonic Anhydrase Activity in Cotton. Physiologia Plantarum, 38, 300-304. doi:10.1111/j.1399-3054.1976.tb04007.x

Redjala, T., Sterckeman, T., Skiker, S. & Echevarria, G. (2010). Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata L. roots. Environmental and Experimental Botany, 68, 99-106. doi: 10.1016/j.envexpbot.2009.10.010

Rahmati, M., Yazdani, M., & Ghanati, F. (2004). Effect of excess amount of Mn on activation of certain enzymes antioxidant system in suspension-cultured tea cells. The 2nd Congress on Applied Biology, Mashhad, Iran. (in Persian)

Rosen, H. (1957). A modified Ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 67, 10-15. doi:10.1016/0003-9861(57)90241-2

SAS Institute. (2000). SAS/STAT user’s guide. Version 9. SAS Institute. Cary, NC.

Sbartai, H., Djebar, M. R., Rouabhi, R., Sbartai, I. & Berrebbah, H. (2011). Antioxidative response in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. American-Eurasian Journal of Toxicology Science, 1, 41-46.

Scholmerich, J., Ferudemann, A. & Kottgen, E. (1987). Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulphate in healthy men. American Journal of Clinical Nutrition, 45, 1480-1486. doi:10.1093/ajcn/45.6.1480

Shahsavari, F., Khoshgoftarmanesh, A. H., Mirmohammady Maibody, A. M., Shariatmadari, H. & Massah, A. (2019). The role of root plasma membrane ATPase and rhizosphere acidification in zinc uptake by two different Zn-deficiency-tolerant wheat cultivars in response to zinc and histidine availability. Archives of Agronomy and Soil Science, doi:10.1080/03650340.2019.1572881

Yu, Z., Zhang, Q., Kraus, T.E.C., Dahlgren, R.A., Anastasio, C. & Zasoski, R.J. (2002). Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry, 61, 173-198.

Zeid, I. M. (2009). Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiologiae Plantarum, 31, 65-70. doi: 10.1007/s11738-008-0201-3